Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left[n\left(n+3\right)\right].\left[\left(n+1\right)\left(n+2\right)\right]=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
ko là số cp
Cho S = 1.2.3 + 2.3.4 + 3.4.5 + . . . + k(k+1)(k+2)
Chứng minh rằng 4S + 1 là số chính phương .
Ta có k(k+1)(k+2) = 41 k(k+1)(k+2).4
= 41 k(k+1)(k+2).[(k+3) – (k-1)]
= 41 k(k+1)(k+2)(k+3) - 41 k(k+1)(k+2)(k-1)
⇒S =41.1.2.3.4 -41.0.1.2.3 + 41.2.3.4.5 -41.1.2.3.4 +…+41 k(k+1)(k+2)(k+3) -41 k(k+1)(k+2)(k-1)
= 41 k(k+1)(k+2)(k+3)4S + 1
= k(k+1)(k+2)(k+3) + 1Theo kết quả bài 2
⇒ k(k+1)(k+2)(k+3) + 1 là số chính phương.
Gọi 4 stn liên tiếp là k, k+1, k+2, k+3
Ta có k(k+1)(k+2)(k+3)+1
= k(k+3)(k+1)(k+2)+1
= (k2 +3k)(k2 +3k+2)+1
Đặt k2 +3k = A
= A(A+2)+1
= A2 +2A + 1
= (A+1)2 => đpcm
#)Giải :
Gọi bốn số tự nhiên liên tiếp là a, a+1, a+2, a+3
Theo đề bài, ta có : \(a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1\)
\(=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)
\(=\left(a^3+3a+1-1\right)\left(a^3+3a+1+1\right)-1\)
\(=\left(a^3+3a+1\right)^2-1^2-1\)
\(=\left(a^3+3a+1\right)^2\left(đpcm\right)\)
Có: \(4x^2-3xy-y^2-p\left(3x+2y\right)=2p^2\Leftrightarrow\left(4x+y\right)\left(x-y\right)-p\left(3x+2y\right)=2p^2\)\(\Leftrightarrow\left[\left(3x+2y\right)+\left(x-y\right)\right]\left(x-y\right)-p\left(3x+2y\right)=2p^2\)\(\Leftrightarrow\left(3x+2y\right)\left(x-y\right)-p\left(3x+2y\right)+\left(x-y\right)^2-p^2=p^2\)\(\Leftrightarrow\left(3x+2y\right)\left(x-y-p\right)+\left(x-y-p\right)\left(x-y+p\right)=p^2\)\(\Leftrightarrow\left(x-y-p\right)\left(4x+y+p\right)=p^2=1.p^2\)
Do \(4x+y+p>x-y-p\)nên \(\hept{\begin{cases}x-y-p=1\left(1\right)\\4x+y+p=p^2\left(2\right)\end{cases}}\)(Do p là số nguyên tố)
Lấy (1) + (2), ta được: \(5x=p^2+1\Rightarrow5x-1=p^2\)(là số chính phương, đpcm)
Câu 1:
a) \(7x-14=0\Leftrightarrow7x=14\Leftrightarrow x=2\)2
Vậy tập nghiệm của phương trình là S={2}
b) \(\left(3x-1\right)\left(2x-2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x-1=0\\2x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=1\end{cases}}}\)
Vậy......................
c)\(\left(3x-1\right)=x-2\)
\(\Leftrightarrow\)\(3x-1-x+2=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)Vậy...................
Câu 2:a)
\(2x+5\le9\Leftrightarrow2x\le4\)
\(\Leftrightarrow x\le2\)vậy......
b)\(3x+4< 5x-3\)
\(\Leftrightarrow2x>7\Leftrightarrow x>\frac{2}{7}\)
Vậy..........
c)\(\frac{\left(3x-1\right)}{4}>2\)
\(\Leftrightarrow3x-1>8\)
\(\Leftrightarrow3x>9\Leftrightarrow x>3\)
vậy.............
Câu 3:a).....
b) Áp dụng định lí pytago vào \(\Delta\)vuong ABC,có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=144+256=20^2\)
\(\Leftrightarrow BC=20\)
Xét \(\Delta\)vuông ABC và \(\Delta\)vuông HBA, có:
\(\widehat{BAH}=\widehat{ACH}\)(cùng phụ với góc ABC)
\(\Rightarrow\Delta\)ABC đồng dạng với\(\Delta\)HBA(g.g)
\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\)
\(\frac{\Rightarrow16}{AH}=\frac{20}{16}\Rightarrow AH=12,8\left(cm\right)\)
A =n^4 + 4 ^n >5 khi n>1
n^4 thì sẽ có tận cùng là 1 nếu n lẻ và có tận cùng là 6 nếu n chẵn ( n chẵn thì A là hợp số )và
4^n thì sẽ có tận cùng là 4 khi n lẻ và 6 khi n chẵn
Nếu n chẵn thì A là hợp số
Nếu n lẻ thì A có tận cùng là 5 => A chia hết cho 5 và A >5 nên A là hợp số
Vậy A là hợp số (n>1)
n^4 + 4=n^4+4n^2+4-4n^2
= (n^2+2)^2-4n^2
=(n^2+2-2n)(n^2+2+2n)
=((n-1)^2+1)(n^2+2+2n)
chung minh cac thua so >1 la se suy ra n^4+4 la hop so
ta có:
4s=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+.........+k(k+1)(k+2)((k+3)-(k-1))
4s=1.2.3.4-1.2.3.0+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+........+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
4s=k(k+1)(k+2)(k+3)
ta biết rằng tích 4 số tự nhiên liên tiếp khi cộng thêm 1 luôn là 1 số chính phương
=>4s+1 là 1 số chính phương
ta co:1/1*2*3=(1/1*2-1/2*3):2
1/2*3*4=(1/1*2-1/2*3):2
...
cu nhu the cho den:
1/98*99*100=(1/98*99-1/99*100):2
suy ra : 1/1*2*3+1/2*3*4+1/3*4*5+...+1/98*99*100
=(1/1*2-1/2*3):2+(1/2*3-1/3*4):2+...+(1/98*99-1/99*100):2
=(1/1*2-1/2*3+1/2*3-1/3*4+...+1/98*99-1/99*100):2
=(1/1*2-1/99*100):2
=(1/2-1/9900)
=(4950/9000-1/9000):2
=4949/9000:2
=4949/18000
học tốt
a,\(n^4+4=n^4+4n^2+4-4n^2\) (\(n\in N\))
\(=\left(n^2+2\right)^2-\left(2n\right)^2\)
\(=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\) (1)
Với \(\forall n\in N\) thì từ (1) \(n^4+4\) có nhiều hơn 2 ước nên là hợp số
b, \(n^4+4k^4=(n^2)^2+\left(2k^2\right)^2\)
\(=\left(n^2\right)^2+4n^2k^2+\left(2k^2\right)^2-4n^2k^2\)
=\(\left(n^2+2k^2\right)^2-\left(2nk\right)^2\)
=\(\left(n^2-2nk+2k^2\right)\left(n^2+2nk+2k^2\right)\)
Phân tích như câu a suy ra đpcm
\(\)
4S=1*2*3*4+2*3*4(5-1)+......+k*(k+1)(k+2)[(k+3)(k-1)]
tự chứng minh tiếp nhé