K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2015

Ta có :

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left[n\left(n+3\right)\right].\left[\left(n+1\right)\left(n+2\right)\right]=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

ko là số cp

 

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

22 tháng 10 2014

khong ai biet ak ngu the

9 tháng 11 2014

Bài này không tìm được n đâu.

Giả sử n2+2002=k2(k>n)<=>2002=k2-n2=(k+n)(k-n). Vì 2002 chẵn nên ít nhất k+n hoặc k-n chẵn.

Mặc khác k+n+k-n=2k=>k+n và k-n cùng chẵn. Điều đó có nghĩa (k+n)(k-n) chia hết cho 4 nhưng 2002 không chia hết cho 4. Vậy ko tồn tại n.

2 tháng 7 2015

Đặt A = 2^8 + 2^11 + 2^n = (2^4)^2.(1 + 8 + 2^n-8) = (2^4)^2.(9 + 2^n-8) 
Để A là SCP thì (9 + 2^n-8) phải là SCP 
Đặt k^2 = 9 + 2^n-8 
=> k^2 - 3^2 = 2^n-8 
=> (k - 3)(k + 3) = 2^n-8 (*) 
Xét hiệu (k - 3) - (k + 3) = 6 
=> k - 3 và k + 3 là các lũy thừa của 2 và có hiệu là 6 
=> k + 3 = 8 và k - 3 = 2 
=> k = 5; thay vào (*) ta có: 2.3 = 2^n-8 
=> n = 12 
Thử lại ta có 2^8 + 2^11 + 2^12 = 80^2 (đúng)

                    Vậy số cần tìm là 12.

2 tháng 7 2015

ê đừng kêu gv olm chọn như vậy chứ ng ta muốn chọn lúc nào thì chọn

29 tháng 9 2019

đề sai nha bạn

đề kiểu j vậy bn

mk chịu

25 tháng 2 2016

giup t voi di ma