K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2020

trả lời hết nha

a, Ta có: \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=\left(4x^2-4+3x^3-2x-x^5\right)+\left(3x-2x^3+4-x^4+x^5\right)\)

\(=4x^2-4+3x^3-2x-x^5+3x-2x^3+4-x^4+x^5\)

\(=4x^2+x^3+x-x^4\) (cj ko cs tg,e check hộ cj nhé!)

Vậy \(M\left(x\right)=-x^4+x^3+4x^2+x\)

b, TH1 : Thay x = -1 vào đa thức trên ta đc

\(4.\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)-\left(-1\right)^4=4.1-1-1-1=4-3=1\)

TH2 : Thay x = 2 vào đa thức trên ta đc

\(-2^4+2^3+4.2^2+2=-16+8+16+2=10\)

c, cj ko hiểu đề lắm, cj đi hok hơi nhiều nên cx ko chắc đáp án lắm, có j sai ko hiểu chỗ nào ib cj nhé ! 

a: \(M\left(x\right)=-2x^4-3x^2-7x-2\)

\(N\left(x\right)=2x^4+3x^2+4x-5\)

\(P\left(x\right)=M\left(x\right)+N\left(x\right)=-3x-7\)

Đặt P(x)=0

=>-3x-7=0

hay x=-7/3

b: Q(x)=N(x)-M(x)

\(=2x^4+3x^2+4x+5+2x^4+3x^2+7x+2\)

\(=4x^4+6x^2+11x+7\)

21 tháng 5 2022

`a)P(x)=M(x)+N(x)`

         `=-2x^4-3x^2-7x-2+3x^2+4x-5+2x^4`

         `=-3x-7`

Cho `P(x)=0`

`=>-3x-7=0`

`=>-3x=7`

`=>x=-7/3`

________________________________________________________

`b)Q(x)+M(x)=N(x)`

`=>Q(x)=N(x)-M(x)`

`=>Q(x)=3x^2+4x-5+2x^4+2x^4+3x^2+7x+2`

`=>Q(x)=4x^4+6x^2+11x-3`

7 tháng 5 2019

\(M\left(x\right)=3x^4-2x^3+5x^2-4x+1\)

\(N\left(x\right)=-3x^4+2x^3-5x^2+7x+5\)

7 tháng 5 2019

\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)

\(=\left(3x^4-2x^3+5x^2-4x+1\right)+\left(-3x^4+2x^3-5x^2+7x+5\right)\)

\(=3x+6\)

\(Q\left(x\right)=M\left(x\right)-N\left(x\right)\)

\(=\left(3x^4-2x^3+5x^2-4x+1\right)-\left(-3x^4+2x^3-5x^2+7x+5\right)\)

\(=3x^4-2x^3+5x^2-4x+1+3x^4-2x^3+5x^2-7x-5\)

\(=6x^4-4x^3+10x^2-11x-4\)

28 tháng 8 2021

a)

\(P\left(x\right)=x-2x^2+3x^5+x^4+x\)

\(\Leftrightarrow P\left(x\right)=\left(x+x\right)-2x^2+x^4+3x^5\)

\(\Leftrightarrow P\left(x\right)=2x-2x^2+x^4+3x^5\)

\(Q\left(x\right)=3-2x-2x^2+x^4-3x^5-x^4+4x^2\)

\(\Leftrightarrow Q\left(x\right)=3-2x+\left(-2x^2+4x^2\right)+\left(x^4-x^4\right)-3x^5\)

\(\Leftrightarrow Q\left(x\right)=3-2x+2x^2-3x^5\)

28 tháng 8 2021

b)

\(P\left(x\right)+Q\left(x\right)=\left(2x-2x^2+3x^5+x^4\right)+\left(3-2x+2x^2-3x^5\right)\)

\(=2x-2x^2+3x^5+x^4+3-2x+2x^2-3x^5\)

\(=\left(2x-2x\right)+\left(3x^5-3x^5\right)+\left(-2x^2+2x^2\right)+x^4+3\)

\(=x^4+3\)

\(P\left(x\right)-Q\left(x\right)=\left(2x-2x^2+3x^5+x^4\right)-\left(3-2x+2x^2-3x^5\right)\)

\(=2x-2x^2+3x^5+x^4-3+2x-2x^2+3x^5\)

\(=\left(2x+2x\right)+\left(-2x^2-2x^2\right)+\left(3x^5+3x^5\right)+x^4-3\)

\(=4x-4x^2+6x^5+x^4-3\)

\(=6x^5+x^4-4x^2+4x-3\)

a: \(P\left(x\right)=A\left(x\right)+B\left(x\right)=2x^2-x^3+x^3-x^2-3x+4=x^2-3x+4\)

b: Theo đề, ta có: Q(-1)=0

\(\Leftrightarrow5-5+a^2-a=0\)

=>a(a-1)=0

=>a=0 hoặc a=1

11 tháng 3 2022

a, \(P\left(x\right)=2x^2-x^3+x^3-x^2+4-3x=x^2-3x+4\)

b, Ta có \(Q\left(-1\right)=5-5+a^2+a=a^2+a=0\)

\(\Leftrightarrow a\left(a+1\right)=0\Leftrightarrow a=0;a=-1\)

2 tháng 5 2022

a)\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)

\(P\left(x\right)=x^4+3x-\dfrac{1}{9}-x+3x^4+2x^2+8x-2x^3+2x^3+\dfrac{2}{3}+4x-4x^4-\dfrac{1}{3}\)

\(P\left(x\right)=2x^2+\dfrac{2}{9}+14x\)

 

 

 

2 tháng 5 2022

rối lắm luôn