K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2021

a, \(P=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{1}{x^2-1}\right)\)ĐK : \(x\ne\pm1\)

\(=\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{x-1+x\left(x+1\right)+1}{\left(x+1\right)\left(x-1\right)}\right)\)

\(=\frac{4x}{x-1+x^2+x+1}=\frac{4x}{x^2+2x}=\frac{4}{x+2}\)

b, Thay x = -11 ta được : \(\frac{4}{-11+2}=-\frac{4}{9}\)

c, \(P\ge1\Leftrightarrow\frac{4}{x+2}-1\ge0\Leftrightarrow\frac{4-x-2}{x+2}\ge0\)

\(\Leftrightarrow\frac{2-x}{x+2}\ge0\Leftrightarrow\frac{x-2}{x+2}\le0\)

Vì \(x+2>x-2\Rightarrow\hept{\begin{cases}x+2\ge0\\x-2\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-2\\x\le2\end{cases}}\Leftrightarrow-2\le x\le2\)

Kết hợp với đk vậy \(-2\le x\le2;x\ne\pm1\)

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

a: Khi x=3 thì \(A=\dfrac{3+2}{3-1}=\dfrac{5}{2}\)

b: \(B=\dfrac{x-1}{x}+\dfrac{2x+1}{x\left(x+1\right)}=\dfrac{x^2-1+2x+1}{x\left(x+1\right)}=\dfrac{x+2}{x+1}\)

\(P=A:B=\dfrac{x+2}{x-1}\cdot\dfrac{x+1}{x+2}=\dfrac{x+1}{x-1}\)

3: Để P>1/3 thì \(P-\dfrac{1}{3}>0\)

=>\(\Leftrightarrow3\left(x+1\right)-x+1>0\)

=>3x+3-x+1>0

=>2x+4>0

hay x>-2

22 tháng 6 2021

a) đk x khác 0;2

P =  \(\dfrac{1}{x\left(x-2\right)}.\left(\dfrac{x^2+4}{x}-4\right)+1\)

\(\dfrac{1}{x\left(x-2\right)}.\dfrac{x^2-4x+4}{x}+1\)

\(\dfrac{1}{x\left(x-2\right)}.\dfrac{\left(x-2\right)^2}{x}+1\)

\(\dfrac{x-2}{x^2}+1\)

\(\dfrac{x^2+x-2}{x^2}\)

b) Để \(\left|2+x\right|=1\)

<=> \(\left[{}\begin{matrix}2+x=1< =>x=-1\left(tm\right)\\2+x=-1< =>x=-3\left(tm\right)\end{matrix}\right.\)

TH1: x = -1

Thay x = -1 vào P, ta có:

\(P=\dfrac{\left(-1\right)^2-1-2}{\left(-1\right)^2}=-2\)

TH2: x = -3

Thay x = -3 vào P, ta có:

\(P=\dfrac{\left(-3\right)^2-3-2}{\left(-3\right)^2}=\dfrac{4}{9}\)

c) P = \(1+\dfrac{x-2}{x^2}\)

Xét \(\dfrac{x^2}{x-2}=\dfrac{\left(x-2\right)^2+4\left(x-2\right)+4}{x-2}\)

\(\left(x-2\right)+\dfrac{4}{x-2}+4\)

Áp dụng bdt co-si, ta có:

\(\left(x-2\right)+\dfrac{4}{x-2}\ge2\sqrt{\left(x-2\right)\dfrac{4}{x-2}}=4\)

<=> \(\dfrac{x^2}{x-2}\ge4+4=8\)

<=> \(\dfrac{x-2}{x^2}\le\dfrac{1}{8}\)

<=> A \(\le\dfrac{9}{8}\)

Dấu "=" <=> x = 4

18 tháng 3 2022

a, ĐKXĐ:\(\left\{{}\begin{matrix}x^2-1\ne0\\x+1\ne0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm1\\x\ne-1\\x\ne1\end{matrix}\right.\Leftrightarrow x\ne\pm1\)

b, \(P=\dfrac{2x^2}{x^2-1}+\dfrac{x}{x+1}-\dfrac{x}{x-1}\)

\(\Rightarrow P=\dfrac{2x^2}{\left(x+1\right)\left(x-1\right)}+\dfrac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow P=\dfrac{2x^2}{\left(x+1\right)\left(x-1\right)}+\dfrac{x^2-x}{\left(x+1\right)\left(x-1\right)}-\dfrac{x^2+x}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow P=\dfrac{2x^2+x^2-x-x^2-x}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow P=\dfrac{2x^2-2x}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow P=\dfrac{2x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow P=\dfrac{2x}{x+1}\)

c, Thay x=2 vào P ta có:

\(P=\dfrac{2x}{x+1}=\dfrac{2.2}{2+1}=\dfrac{4}{3}\)

18 tháng 3 2022

Bài `1:`

`a)`

Để `P` có nghĩa thì:

`{(x^2-1\ne0),(x+1\ne0),(x-1\ne0):}`

`<=>x\ne+-1`

`b)`

`P=(2x^2)/(x^2-1)+x/(x+1)-x/(x-1)(x\ne+-1)`

`P=(2x^2)/((x-1)(x+1))+(x.(x-1))/((x+1)(x-1))-(x.(x+1))/((x-1)(x+1))`

`P=(2x^2+x^2-x-x^2-x)/((x-1)(x+1))`

`P=(2x^2-2x)/((x-1)(x+1))`

`P=(2x.(x-1))/((x-1)(x+1))=2x/(x+1)`

`c)`

Với `x=2`

`P=(2.2)/(2+1)=4/3`

a) Ta có: \(A=\left(1+\dfrac{x^2}{x^2+1}\right):\left(\dfrac{1}{x-1}-\dfrac{2x}{x^3+x-x^2-1}\right)\)

\(=\dfrac{2x^2+1}{x^2+1}:\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\)

\(=\dfrac{2x^2+1}{x^2+1}\cdot\dfrac{\left(x-1\right)\left(x^2+1\right)}{\left(x-1\right)^2}\)

\(=\dfrac{2x^2+1}{x-1}\)

b) Thay \(x=-\dfrac{1}{2}\) vào A, ta được:

\(A=\left(2\cdot\dfrac{1}{4}+1\right):\left(\dfrac{-1}{2}-1\right)\)

\(=\dfrac{3}{2}:\dfrac{-3}{2}=-1\)

c) Để A<1 thì A-1<0

\(\Leftrightarrow\dfrac{2x^2+1}{x-1}-1< 0\)

\(\Leftrightarrow\dfrac{2x^2+1-x+1}{x-1}< 0\)

\(\Leftrightarrow\dfrac{2x^2-x+2}{x-1}< 0\)

\(\Leftrightarrow x-1< 0\)

hay x<1

19 tháng 7 2021

câu c xét hiệu à bạn

9 tháng 2 2021

a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne2\\x\ne3\end{matrix}\right.\)

Ta có : \(P=\dfrac{2x\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{4}{\left(x-2\right)\left(x-3\right)}-\dfrac{x-2}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{2x\left(x-3\right)+4-x+2}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-6x-x+6}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{2x^2-7x+6}{\left(x-2\right)\left(x-3\right)}=\dfrac{\left(x-2\right)\left(2x-3\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x-3}{x-3}\)

b, Ta có : \(P=\dfrac{2x-3}{x-3}=\dfrac{2x-6+3}{x-3}=2+\dfrac{3}{x-3}\)

- Để P là số nguyên \(\Leftrightarrow x-3\in\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow x\in\left\{4;3;6;0\right\}\)

Vậy ...

9 tháng 2 2021

a ĐKXĐ : \(x\ne2,x\ne3\)

\(\Rightarrow P=\dfrac{2x\left(x-3\right)+4-\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-6x+4-x+2}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-7x+6}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-7x+6}{x^2-5x+6}\)b Ta có P = \(\dfrac{2x^2-7x+6}{x^2-5x+6}=\dfrac{x^2-5x+6+x^2-2x}{x^2-5x+6}=1+\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=1+\dfrac{x}{x-3}\)

Để P\(\in Z\) \(\Leftrightarrow1+\dfrac{x}{x-3}\in Z\) \(\Rightarrow\dfrac{x}{x-3}\in Z\) \(\Rightarrow x⋮x-3\) \(\Rightarrow x-3+3⋮x-3\)

\(\Rightarrow3⋮x-3\) \(\Rightarrow\left(x-3\right)\in\left\{-3;-1;1;3\right\}\) \(\Rightarrow x\in\left\{0;2;4;6\right\}\) 

Thử lại ta thấy đúng 

Vậy...