Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, * Với m + 1 = 0 => m = -1
Phương trình trở thành: -2x - 4 = 0 <=> 2x = -4 <=> x = -2
m = -1 phương trình có nghiệm x = -2
* Với m + 1 \(\ne\)0 \(\Leftrightarrow\)m\(\ne\) -1
\(\Delta'\) =( m + 2 )-(m+1) (m-3) = m2 + 4m + 4 - m2 + 3m - m + 3
= 6m + 7
Phương trình có nghiệm : \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\) 6m + 7 \(\ge\) 0 \(\Leftrightarrow\)6m \(\ge\) -7 \(\Leftrightarrow\)m \(\ge-\frac{7}{6}\)
Phương trình có nghiệm \(\Leftrightarrow\) m \(\ne\) -1 ; m \(\ge\)\(-\frac{7}{6}\)
Kết luận : Phương trình có nghiệm \(\Leftrightarrow m\ge-\frac{7}{6}\)
b, Điều kiện : m \(\ge-\frac{7}{6};m\ne-1\)
Theo hệ thức Viet , ta có \(\hept{\begin{cases}S=x_1+x_2=\frac{2\left(m+2\right)}{m+1}\\P=x._1x_2=\frac{m-3}{m+1}\end{cases}}\)
Do đó \(\left(4x_1+1\right)\left(4x_2+1\right)=18\)
\(\Leftrightarrow16x_1x_2+4x_1+4x_2+1=18\)
\(\Leftrightarrow16x_1x_2+4\left(x_1+x_2\right)-17=0\)
\(\Leftrightarrow\frac{16\left(m-3\right)}{m+1}+\frac{8\left(m+2\right)}{m+1}-17=0\)
\(\Leftrightarrow16\left(m-3\right)+8\left(m+2\right)-17\left(m+1\right)=0\)
\(\Leftrightarrow16m-48+8m+16-17m-17=0\)
\(\Leftrightarrow7m-49=0\Leftrightarrow7m=49\Leftrightarrow m=7\)
m = 7 thỏa mãn điều kiện \(\hept{\begin{cases}m\ne-1\\m\ge-\frac{7}{6}\end{cases}}\)
Vậy \(m=7\) thì phương trình có 2 nghiệm \(x_1;x_2\)thỏa mãn:
\(4\left(x_1+1\right)\left(4x_2+1\right)=18\)
1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)
Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)
a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)
Vậy \(m>\frac{1+\sqrt{13}}{2}\)
2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)
Ta thấy \(\Delta=4m^2+1>0\forall m\)
Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m
b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)
Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)
\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)
\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)
Vậy \(m=0\)thoă mãn yêu cầu bài toán
\(a,\Delta=m^2-4m+4=\left(m-2\right)^2\ge0\forall m\)
Nên pt đã cho luôn có 2 nghiệm phân biệt với mọi m
b, Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)
Ta có \(B=\frac{2x_1x_2+3}{x_1^2+x_2^2+2\left(1+x_1x_2\right)}=1\)
\(\Leftrightarrow\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=1\)
\(\Leftrightarrow\frac{2\left(m-1\right)+3}{m^2+2}=1\)
\(\Leftrightarrow\frac{2m+1}{m^2+2}=1\)
\(\Leftrightarrow2m+1=m^2+2\)
\(\Leftrightarrow m^2-2m+1=0\)
\(\Leftrightarrow\left(m-1\right)^2=0\)
\(\Leftrightarrow m=1\)
Bài 2:
a: \(a=1;b=-2\left(m-2\right);c=-8\)
Vì ac<0 nên phương trình luôn có hai nghiệm trái dấu với mọi m
b: Theo Vi-et, ta được: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)=2m-4\\x_1x_2=-8\end{matrix}\right.\)
Ta có: \(x_1^3+x_2^3-4x_1-4x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-4\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(2m-4\right)^3-3\cdot\left(2m-4\right)\cdot\left(-8\right)-4\cdot\left(2m-4\right)=0\)
\(\Leftrightarrow\left(2m-4\right)\left[4m^2-16m+16+24-4\right]=0\)
\(\Leftrightarrow\left(2m-4\right)\left(4m^2-16m+36\right)=0\)
\(\Leftrightarrow2m-4=0\)
hay m=2
Khi m=0 thì pt sẽ là \(x^2+2x-5=0\)
=>(x+1)2=6
hay \(x\in\left\{\sqrt{6}-1;-\sqrt{6}-1\right\}\)
a: Δ=(2m-1)^2-4*(-m)
=4m^2-4m+1+4m=4m^2+1>0
=>Phương trình luôn có nghiệm
b: \(A=\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2\)
\(=\left(2m-1\right)^2-3\left(-m\right)\)
=4m^2-4m+1+3m
=4m^2-m+1
=4(m^2-1/4m+1/4)
=4(m^2-2*m*1/8+1/64+15/64)
=4(m-1/8)^2+15/16>=15/16
Dấu = xảy ra khi m=1/8
Ta nhận thấy tổng các hệ số trong phương trình đã cho là
\(1-2\left(m-1\right)+2m-3=0\) nên pt này luôn có 1 nghiệm bằng 1, còn nghiệm kia là \(2m-3\). Do vai trò của \(x_1,x_2\) trong \(x^2+2x_1x_2-x_2=1\) là không như nhau nên ta phải chia làm 2TH:
TH1: \(x_1=1;x_2=2m-3\). Khi đó ta có
\(1+2\left(2m-3\right)-\left(2m-3\right)=1\) \(\Leftrightarrow2m-3=0\) \(\Leftrightarrow m=\dfrac{3}{2}\)
TH2: \(x_1=2m-3;x2=1\). Khi đó
\(\left(2m-3\right)^2+2\left(2m-3\right)-1=1\) \(\Leftrightarrow4m^2-8m+1=0\) \(\Leftrightarrow m=\dfrac{2\pm\sqrt{3}}{2}\)
Vậy để pt đã cho có 2 nghiệm \(x_1,x_2\) thỏa ycbt thì \(\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=\dfrac{2\pm\sqrt{3}}{2}\end{matrix}\right.\)
À làm cho bạn câu cuối nè. Hiểu rồi hiểu rồi.
\(x_1^2.x_2+x_1.x_2^2+30=0\)
\(\Leftrightarrow P.S=30\)
\(\Leftrightarrow\left(-2m+5\right)\left[-\left(2m-6\right)\right]=30\)
\(\Leftrightarrow\left(-2m+5\right)\left(-2m+6\right)=30\)
\(\Leftrightarrow4m^2-12m-10m+30=30\)
\(\Leftrightarrow4m^2-22m=0\)
\(\Leftrightarrow m\left(4m-22\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\\4m-22=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\m=\frac{11}{2}\end{cases}}}\)
Vậy: m = .. và .. là giá trị cần tìm
a/ ( a = 1; b = 2 (m-3); c = -2m + 5 )
\(\Delta=b^2-4ac\)
\(=\left[2\left(m-3\right)\right]^2-4.1.\left(-2m+5\right)\)
\(=4\left(m^2-6m+9\right)+8m-20\)
\(=4m^2-24m+36+8m-20\)
\(=4m^2-16m+16\)
\(=\left(2m\right)^2-16m+16\)
\(=\left(2m-4\right)^2\ge0\forall m\)
Vậy pt trên luôn có 2 nghiệm với mọi m
b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=\frac{-b}{a}=-\left[2\left(m-3\right)\right]\\P=x_1x_2=\frac{c}{a}=-2m+5\end{cases}}\)
Tới đây thôi. Đọc đề chả hiểu viết gì cả.