Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với m= 2, ta có phương trình: x 2 + 2 x − 3 = 0
Ta có: a + b + c = 1 + 2 − 3 = 0
Theo định lý Viet, phương trình có 2 nghiệm:
x 1 = 1 ; x 2 = − 3 ⇒ S = 1 ; − 3 .
b) Chứng minh rằng phương trình luôn có nghiệm ∀ m .
Ta có: Δ ' = m − 1 2 − 1 + 2 m = m 2 ≥ 0 ; ∀ m
Vậy phương trình luôn có nghiệm ∀ m .
c) Theo định lý Viet, ta có: x 1 + x 2 = − 2 m + 2 x 1 . x 2 = 1 − 2 m
Ta có:
x 1 2 . x 2 + x 1 . x 2 2 = 2 x 1 . x 2 + 3 ⇔ x 1 . x 2 x 1 + x 2 − 2 = 6 ⇒ 1 − 2 m − 2 m + 2 − 2 = 6 ⇔ 2 m 2 − m − 3 = 0
Ta có: a − b + c = 2 + 1 − 3 = 0 ⇒ m 1 = − 1 ; m 2 = 3 2
Vậy m= -1 hoặc m= 3/2
a: Để phương trình có hai nghiệm trái dấu thì 2m<0
hay m<0
b: \(\text{Δ}=2^2-4\cdot2m=-8m+4\)
Để phương trình có hai nghiệm thì -8m+4>=0
=>-8m>=-4
hay m<=1/2
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2x_1+x_2=-4\\x_1+x_2=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-2\\x_2=0\end{matrix}\right.\)
=>2m=0
hay m=0
a)Ta có:
`\Delta'`
`=(m+1)^2-6m+4`
`=m^2+2m+1-6m+4`
`=m^2-4m+5`
`=(m-2)^2+1>=1>0(AA m)`
`=>`phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
Câu b đề không rõ :v
a.
Xét phương trình: \(x^2+4mx-2m^2=0\) có : \(\Delta^'=(b^')^2-ac=(2m)^2+2m^2=6m^2\ge0\forall m\)=> pt luôn có nghiệm với mọi giá trị của m
b. Để pt có 2 nghiệm x1,x2 thì \(\Delta^'>0\Leftrightarrow m\ne0\)(*)
pt có 2 nghiệm x1,x2 thỏa mãn x1 +x2 = 2x1x2 thì m phải là nghiệm của hệ pt sau:
x1+ x2 = -4m (1)
x1.x2 = -\(2m^2\) (2)
x1+x2=2x1x2 (3)
Thế (1) và (2) vào pt(3) ta được: -4m = -4m2
<=> m = 0 hoặc m= 1
Kết hợp với đk (*) => m=1