Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Trước tiên để pt có thể có 2 nghiệm thì \(2m-1\neq 0\Leftrightarrow m\neq \frac{1}{2}\)
Với \(m\neq \frac{1}{2}\). PT có 2 nghiệm khi:
\(\Delta'=m^2-(2m-1)=(m-1)^2>0\Leftrightarrow m\neq 1\)
Áp dụng định lý Viete có: \(\left\{\begin{matrix} x_1+x_2=\frac{2m}{2m-1}\\ x_1x_2=\frac{1}{2m-1}\end{matrix}\right.\)
Ta có:
\(|x_1^2-x_2^2|=1\)
\(\Rightarrow |x_1^2-x_2^2|^2=1\)
\(\Leftrightarrow (x_1-x_2)^2(x_1+x_2)^2=1\)
\(\Leftrightarrow [(x_1+x_2)^2-4x_1x_2](x_1+x_2)^2=1\)
\(\Leftrightarrow [\frac{4m^2}{(2m-1)^2}-\frac{4}{2m-1}].\frac{4m^2}{(2m-1)^2}=1\)
\(\Leftrightarrow 16(m-1)^2m^2=(2m-1)^4\)
\(\Leftrightarrow [4(m^2-m)-(2m-1)^2][4(m^2-m)+(2m-1)^2]=0\)
\(\Rightarrow 8m^2-8m+1=0\)
\(\Rightarrow m=\frac{2\pm \sqrt{2}}{4}\) (t/m)
b) Ta có : \(\Delta'=m^2-2m+1-m^2+m\)
\(=-m+1\)
để phương trình có đúng một nghiệm, thì : \(\Delta'=0\)\(\Leftrightarrow-m+1=0\)\(\Rightarrow m=1\)
c) Ta có: \(\Delta'=m^2-\left(m-3\right)\left(m-6\right)\)
\(=m^2-m^2+6m+3m-18\)
\(=9m-18\)
\(=9\left(m-2\right)\)
Để phương trình có 2 nghiệm phân biệt thì : \(\Delta'>0\)\(\Leftrightarrow9\left(m-2\right)>0\)
\(\Leftrightarrow m-2>0\)\(\Leftrightarrow m>2\)
c, phương trình c có 2 nghiệm \(\leftrightarrow\leftrightarrow\)\(\Delta\)= -36m + 72>0
<=> m <2
b,phương trình c có 1 nghiệm phân biệt khi và chỉ khi: \(\Delta\)= -4m+4=0
<=> m= 1
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đ
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đề bài thì
\(x^2_2+x^2_1\ge10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)
Làm tiếp sẽ ra. Câu còn lại tương tự