Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2-2(m-1)x+m2-3m=0
△'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1
áp dụng hệ thức Vi-ét ta được
x1+x2=2(m-1) (1)
x1*x2=m2-3m (2)
a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1
b) để PT có duy nhất một nghiệm âm thì x1*x2 <0
e) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)
\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)
\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)
\(\Leftrightarrow2m^2-2m-4=0\)(1)
\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)
Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)
a: Th1: m=0
PT sẽ là -6x-1=0
=>x=-1/6
=>loại
TH2: m<>0
Δ=(-6)^2-4*m*(-1)=4m+36
Để phương trình có hai nghiệm pb thì 4m+36>0
=>m>-9
b: TH1: m=0
Pt sẽ là -6x-1=0
=>x=-1/6
=>Nhận
TH2: m<>0
Δ=(-6)^2-4*m*(-1)=4m+36
Để PT có nghiệm kép thì 4m+36=0
=>m=-9
c: Để PTVN thì m<>0 và 4m+36<0
=>m<-9
d: Để PT có đúng 1 nghiệm thì pt có nghiệm kép
=>m=-9 hoặc m=0
Phương trình có 2 nghiệm pb khi:
\(\Delta'=\left(m+1\right)^2-m^2>0\Leftrightarrow2m+1>0\)
\(\Rightarrow m>-\dfrac{1}{2}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x_1+x_2-2}{2}=m\\x_1x_2=m^2\end{matrix}\right.\)
\(\Rightarrow x_1x_2=\left(\dfrac{x_1+x_2-2}{2}\right)^2\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
a,Phương trình có 2 nghiệm pb khi: \(\Delta'>0\Rightarrow\left(m+1\right)^2-m^2>0\Leftrightarrow2m+1>0\Leftrightarrow m>\dfrac{-1}{2}\)
\(x^2-2mx-x+2m=0\)
\(\Leftrightarrow x\left(x-1\right)-2m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2m\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=2m\end{matrix}\right.\)
Để pt có 2 nghiệm pb trong đó có 1 nghiệm nhỏ hơn 1
\(\Rightarrow2m< 1\Rightarrow m< \dfrac{1}{2}\)
Đặt \(x^2=t\ge0\) pt trở thành: \(t^2+\left(1-2m\right)t+m^2-1=0\) (1)
\(\Delta=\left(1-2m\right)^2-4\left(m^2-1\right)=-4m+5\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}t_1+t_2=2m-1\\t_1t_2=m^2-1\end{matrix}\right.\)
Từ \(x^2=t\) (2) ta có nhận xét: nếu \(t< 0\) thì (2) vô nghiệm, nếu \(t=0\) thì (2) có đúng 1 nghiệm \(x=0\), nếu \(t>0\) thì (2) có 2 nghiệm phân biệt \(x=\pm\sqrt{t}\)
Do đó:
a.
Phương trình đã cho vô nghiệm khi: (1) vô nghiệm hoặc (1) có 2 nghiệm đều âm
TH1: (1) vô nghiệm \(\Rightarrow-4m+5< 0\Rightarrow m>\dfrac{5}{4}\)
TH2: (1) có 2 nghiệm đều âm \(\Rightarrow\left\{{}\begin{matrix}-4m+5\ge0\\t_1+t_2=2m-1< 0\\t_1t_2=m^2-1>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{4}\\m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -1\)
Kết hợp lại ta được: \(\left[{}\begin{matrix}m>\dfrac{5}{4}\\m< -1\end{matrix}\right.\)
b.
Pt có 2 nghiệm pb khi và chỉ khi (1) có đúng 2 nghiệm trái dấu (khi đó nghiệm dương của t sẽ cho 2 nghiệm x và nghiệm âm ko cho nghiệm x nào)
\(\Rightarrow t_1t_2=m^2-1< 0\Rightarrow-1< m< 1\)
c.
Pt có 3 nghiệm pb khi và chỉ khi (1) có 1 nghiệm bằng 0 và 1 nghiệm dương
\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m=1\)
d.
Pt có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb
\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow1< m< \dfrac{5}{4}\)
À ừ đúng rồi em quên mất TH (1) có nghiệm kép dương nữa
\(\Delta=\left[2\left(m+1\right)\right]^2-4m^2=4m+1\)
a) để pt có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow4m+1>0\Leftrightarrow m>\frac{-1}{4}\)
b) thay x = -2 vào pt , ta được :
\(\left(-2\right)^2+2\left(m+1\right)\left(-2\right)+m^2=0\)
\(\Rightarrow m^2-4m=0\Rightarrow\orbr{\begin{cases}m=0\\m=4\end{cases}}\)
a) Phương trình có 2 nghiệm phân biệt:
<=> \(\Delta'=\left(m+1\right)^2-m^2>0\)
<=> m > -1/2
Vậy....
b) Phương trình có 2 nghiệm phân biệt trong đó có 1 nghiệm x = - 2
Thay x = -2 vào ta có: \(m^2-4\left(m+1\right)+4=0\)
<=> m = 0 (thỏa mãn )
hoặc m = 4 ( thỏa mãn)
Vậy ...