Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2-2(m-1)x+m2-3m=0
△'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1
áp dụng hệ thức Vi-ét ta được
x1+x2=2(m-1) (1)
x1*x2=m2-3m (2)
a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1
b) để PT có duy nhất một nghiệm âm thì x1*x2 <0
e) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)
\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)
\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)
\(\Leftrightarrow2m^2-2m-4=0\)(1)
\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)
Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)
\(\Delta=\left[2\left(m+1\right)\right]^2-4m^2=4m+1\)
a) để pt có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow4m+1>0\Leftrightarrow m>\frac{-1}{4}\)
b) thay x = -2 vào pt , ta được :
\(\left(-2\right)^2+2\left(m+1\right)\left(-2\right)+m^2=0\)
\(\Rightarrow m^2-4m=0\Rightarrow\orbr{\begin{cases}m=0\\m=4\end{cases}}\)
a) Phương trình có 2 nghiệm phân biệt:
<=> \(\Delta'=\left(m+1\right)^2-m^2>0\)
<=> m > -1/2
Vậy....
b) Phương trình có 2 nghiệm phân biệt trong đó có 1 nghiệm x = - 2
Thay x = -2 vào ta có: \(m^2-4\left(m+1\right)+4=0\)
<=> m = 0 (thỏa mãn )
hoặc m = 4 ( thỏa mãn)
Vậy ...
a) PT có nghiệm kép nếu
\(\hept{\begin{cases}m-1\ne0\\\Delta'=\left(m-1\right)^2+m\left(m-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne1\\\left(m-1\right)\left(2m-1\right)=0\end{cases}\Leftrightarrow}m=\frac{1}{2}}\)
Vậy \(m=\frac{1}{2}\)thì pt có nghiệm kép
\(x_1=x_2=-\frac{b}{2a}=-\frac{2\left(m-1\right)}{2\left(m-1\right)}=-1\)
b) Để pt có nghiệm phân biệt đều âm thì
\(\hept{\begin{cases}m-1\ne0\\\Delta'=\left(m-1\right)\left(2m-1\right)>0\end{cases}}\)
\(\hept{\begin{cases}x_1\cdot x_2=-\frac{m}{m-1}>0\\x_1+x_2=\frac{2\left(m-1\right)}{m-1}< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}m>1\\m< \frac{1}{2}\end{cases}}\)và \(0< m< 1\)
Vậy 0<m<\(\frac{1}{2}\)
định gõ ấn f5 cái thì thấy bạn làm xong r :((
giải nhanh quá !
a. Bạn tự giải
b. Pt có nghiệm kép khi:
\(\Delta'=\left(m+1\right)^2-4m=0\Leftrightarrow m^2-2m+1=0\Leftrightarrow m=1\)
Khi đó: \(x_{1,2}=m+1=2\)
c. Do pt có nghiệm bằng 4:
\(\Rightarrow4^2-2\left(m+1\right).4+4m=0\)
\(\Leftrightarrow8-4m=0\Rightarrow m=2\)
\(x_1x_2=4m\Rightarrow x_2=\dfrac{4m}{x_1}=\dfrac{4.2}{4}=2\)
a) Xét pt \(x^2-\left(2m-3\right)x+m^2-3m=0\)
Ta có \(\Delta=\left[-\left(2m-3\right)^2\right]-4.1\left(m^2-3m\right)\)\(=4m^2-12m+9-4m^2+12m\)\(=9>0\)
Vậy pt đã cho luôn có 2 nghiệm phân biệt với mọi m.
Câu b mình nhìn không rõ đề, bạn sửa lại nhé.
\(x^2-2mx+\left(m-1\right)^3=0\left(1\right)\)
PT (1) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta'=m^2-\left(m-1\right)^3>0\)(*)
Giả sử phương trình có 2 nghiệm phân biệt là u, u2 thì theo Vi-et ta có:
\(\hept{\begin{cases}u+u^2=2m\\u\cdot u^2=\left(m-1\right)^2\end{cases}}\)(**)
(**)\(\Leftrightarrow\hept{\begin{cases}u+u^2=2m\\u^3=\left(m-1\right)^3\end{cases}\Leftrightarrow\hept{\begin{cases}u+u^2=2m\\u=m-1\end{cases}\Leftrightarrow}\hept{\begin{cases}m-1+\left(m-1\right)^2=2m\\u=m-1\end{cases}\Leftrightarrow}\hept{\begin{cases}m^2-3m=0\\u=m-1\end{cases}}}\)
PT \(m^2-3m=0\Leftrightarrow m\left(m-3\right)=0\Leftrightarrow m_1=0;m_2=3\left(tmđk\right)\)
Vậy m=0; m=3 là 2 giá trị cần tìm
a, Với m=2
\(Pt\Leftrightarrow x^2-8x+9=0\Leftrightarrow\left(x-4\right)^2=7\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=\sqrt{7}\\x-4=-\sqrt{7}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{7}+4\\x=-\sqrt{7}+4\end{cases}}\)
Vậy pt có 2 nghiệm phân biệt \(\orbr{\begin{cases}x=\sqrt{7}+4\\x=-\sqrt{7}+4\end{cases}}\)
a, Để pt có 2 nghiệm phân biệt thì Δ>0
→(-2(m-1))2 -4(m-2)(m+1)>0
↔4(m2-2m+1)-4(m2-2m+m-2)>0
↔-4m +12>0
↔m<3