\(x^2-\left(2k+1\right)x+k^2+2=0\)

a) tìm k để pt có nghiệm này gấp đôi n...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 5 2020

Anh Phuong

Bạn bấm mode-5-3 để tìm min trong trường hợp này ko áp dụng được, vì nếu phân tích theo mode 5-3 \(2k^2+4k-3=2\left(k+1\right)^2-5\ge-5\) thì dấu "=" xảy ra khi \(k=-1\) ko thỏa mãn điều kiện delta \(k\ge\frac{7}{4}\)

Theo lý thuyết hàm bậc 2 thì \(2k^2+4k-2\) đồng biến khi \(k\ge-1\) nghĩa là với \(k\ge\frac{7}{4}\) thì chắc chắn A min sẽ xảy ra khi \(k=\frac{7}{4}\)

Thay \(k=\frac{7}{4}\) vào tính được \(A=\frac{81}{8}\)

Do đó ta thêm bớt: \(A=\left(2k^2+4k-\frac{105}{8}\right)+\frac{81}{8}\)

Và bây giờ chỉ việc phân tích ngoặc đầu thành nhân tử bằng máy tính dễ dàng, máy tính cho 2 nghiệm \(\frac{7}{4};-\frac{15}{4}\), do đó:

\(A=2\left(k-\frac{7}{4}\right)\left(k+\frac{15}{4}\right)+\frac{81}{8}\)

Do \(k\ge\frac{7}{4}\Rightarrow\left\{{}\begin{matrix}k-\frac{7}{4}\ge0\\k+\frac{15}{4}>0\end{matrix}\right.\) \(\Rightarrow2\left(k-\frac{7}{4}\right)\left(k+\frac{15}{4}\right)\ge0\)

\(\Rightarrow A\ge0+\frac{81}{8}=\frac{81}{8}\)

Khi có điều kiện delta, thì luôn phải chú ý điểm rơi xem có thỏa mãn điều kiện hay ko, nếu không thì phải tìm cách tách riêng như trong bài này, nếu ko kết quả sẽ sai hết.

NV
19 tháng 4 2020

\(\Delta=4k^2+4k+1-4k^2-8=4k-7\ge0\Rightarrow k\ge\frac{7}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2k+1\\x_1x_2=k^2+2\end{matrix}\right.\)

a/ Kết hợp Viet và đề bài ta có hệ: \(\left\{{}\begin{matrix}x_1+x_2=2k+1\\x_1=2x_2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{2\left(2k+1\right)}{3}\\x_2=\frac{2k+1}{3}\end{matrix}\right.\)

\(\Rightarrow\frac{2\left(2k+1\right)}{3}.\frac{\left(2k+1\right)}{3}=k^2+2\Leftrightarrow2\left(2k+1\right)^2=9\left(k^2+2\right)\)

\(\Leftrightarrow k^2-8k+16=0\Rightarrow k=4\)

b/ \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(2k+1\right)^2-2\left(k^2+2\right)=2k^2+4k-3\)

\(=2\left(k-\frac{7}{4}\right)\left(k+\frac{15}{4}\right)+\frac{81}{8}\ge\frac{81}{8}\)

\(\Rightarrow A_{min}=\frac{81}{8}\) khi \(k=\frac{7}{4}\)

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
21 tháng 3 2020

a) \(\left(x^2-2\right)\left(k-1\right)x+2k-5=0\)

\(\Delta=\left(k-1\right)^2-2k+5\)

\(=k^2-4x+6=\left(k-2\right)^2+2>0\)

=> PT luôn có nghiệm với mọi k

24 tháng 4 2019

a) Các hệ số a,b,c lần lượt là

\(a=1\); \(b=-\left(m+2\right)\); c=2m

Ta có △=\(b^2-4ac=\left[-\left(m+2\right)\right]^2-4.1.2m=m^2+4m+4-8m=m^2-4m+4\)

b) Để phương trình có nghiệm kép thì △=0\(\Leftrightarrow m^2-4m+4=0\Leftrightarrow\left(m-2\right)^2=0\Leftrightarrow m-2=0\Leftrightarrow m=2\)

c) Ta có △=\(m^2-4m+4=\left(m-2\right)^2\ge0\Rightarrow\)phương trình luôn có 2 nghiệm x1,x2

Theo định lí Vi-ét ta có \(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=\frac{m+2}{1}=m+2\\x_1x_2=\frac{c}{a}=\frac{2m}{1}=2m\end{matrix}\right.\)

Ta lại có \(x_1^2+x_2^2=20\Leftrightarrow x_1^2+2x_1x_2+x_2^2-2x_1x_2=20\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\Leftrightarrow\left(m+2\right)^2-2.2m=20\Leftrightarrow m^2+4m+4-4m=20\Leftrightarrow m^2+4=20\Leftrightarrow m^2=16\Leftrightarrow m=\pm4\)

Vậy \(m=\pm4\) thì phương trình có 2 nghiệm x1,x2 thỏa mãn \(x_1^2+x_2^2=20\)

24 tháng 4 2019

a)\(a=1;b=-\left(m+2\right);c=2m\)

\(\Delta=\left[-\left(m+2\right)\right]^2-4\cdot1\cdot2m=m^2+4m+4-8m\)

\(\Delta=m^2-4m+4=\left(m-2\right)^2\)

b) Để phương trình có nghiệm kép thì \(\Delta=0\)

\(\left(m-2\right)^2=0\Rightarrow m-2=0\Rightarrow m=2\)

Thế \(m=2\) vào phương trình \(x^2-\left(m+2\right)x+2m=0\), ta được:

\(x^2-\left(2+2\right)x+2\cdot2=0\)

\(x^2-4x+4=0\)

\(\left(x-2\right)^2=0\)

\(x-2=0\Rightarrow x=2\)

c) Theo hệ thức viet:

\(x_1+x_2=-\frac{b}{a}=\frac{m+2}{1}=m+2\)

\(x_1x_2=\frac{c}{a}=\frac{2m}{1}=2m\)

\(x_1^2+x_2^2=20\)

\(\left(x_1+x_2\right)^2-2x_1x_2=20\)

\(\left(m+2\right)^2-2\cdot2m=20\)

\(m^2+4m+4-4m=20\)

\(m^2-16=0\)

\(\left(m+4\right)\left(m-4\right)=0\)

\(m=\pm4\)

29 tháng 5 2020

a) Phương trình đã cho có \(\Delta'=36-6a+a^2=a^2-6a+9+27=\left(a-3\right)^3+27>0\) nên có 2 nghiệm phân biệt với mọi a

b) Theo hệ thức Vi-et ta có \(x_1+x_2=6\Leftrightarrow x_2=6-x_1\)

Ta có \(x_2=x_1^3-8x_1\Leftrightarrow x_1^3-8x_1=6-x_1\Leftrightarrow x_1^3-7x_1-6=0\)

\(\Leftrightarrow x_1^3-x_1-6x_1-6=0\Leftrightarrow x_1\left(x_1-1\right)\left(x_1+1\right)-6\left(x_1+1\right)=0\)

\(\Leftrightarrow\left(x_1+1\right)\left(x_1^2-x_1-6\right)=0\Leftrightarrow\left(x_1+1\right)\left(x_1^2+2x_1-3x_1-6\right)=0\)

\(\Leftrightarrow\left(x_1+1\right)\left[x_1\left(x_1+2\right)-3\left(x_1+2\right)\right]=0\Leftrightarrow\left(x_1+1\right)\left(x_1+2\right)\left(x_1-3\right)=0\)

\(\Leftrightarrow x_1\in\left\{-1;-2;3\right\}\)

*) \(x_1=-1\Leftrightarrow\left(-1\right)^2-6\left(-1\right)+6a-a^2=0\Leftrightarrow a^2-6a-7=0\Leftrightarrow\orbr{\begin{cases}a=-1\\a=7\end{cases}}\)

*) \(x_1=-2\Leftrightarrow\left(-2\right)^2-6\left(-2\right)+6a-a^2=0\Leftrightarrow a^2-6a-16=0\Leftrightarrow\orbr{\begin{cases}a=-2\\a=8\end{cases}}\)

*) \(x_1=3\Leftrightarrow3^2-6\cdot3+6a-a^2=0\Leftrightarrow a^2-6a+9=0\Leftrightarrow a=3\)

Vậy \(a=\left\{-1;-2;3;7;8\right\}\)

25 tháng 7 2016

Điều kiên có nghiệm của phương trình : \(\Delta'=9-m\ge0\Leftrightarrow m\le9\)

Theo hệ thức Vi-et , ta có : \(\begin{cases}x_1+x_2=6\\x_1.x_2=m\end{cases}\)

Biến đổi : \(\left(x_1^2+1\right)\left(x_2^2+1\right)=36\)

\(\Leftrightarrow\left(x_1.x_2\right)^2+\left(x_1+x_2\right)^2-2x_1.x_2-35=0\)

\(\Leftrightarrow m^2+36-2m-35=0\)

\(\Leftrightarrow\left(m-1\right)^2=0\Leftrightarrow m=1\) (thỏa mãn)

Vậy m = 1 thỏa mãn đề bài.

25 tháng 7 2016

Cảm ơn bạn nhiều nha!