K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

Phương trình: \(x^2-2\left(m-1\right)x+m-4=0\left(1\right)\)

a/ Xét phương trình (1) có \(\Delta=4\left(m-1\right)^2-4\left(m-4\right)\)

= \(4m^2-8m+4-4m+16\)

= \(4m^2-12m+20\)

= \(\left(2m-3\right)^2+11\)

Ta luôn có: \(\left(2m-3\right)^2\ge0\) với mọi m

\(\Rightarrow\left(2m-3\right)^2+11>0\) với mọi m

\(\Leftrightarrow\Delta>0\) với mọi m

Vậy phương trình (1) có 2 nghiệm phân biệt với mọi giá trị của m

b/ Xét phương trình (1), áp dụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=m-4\end{matrix}\right.\)

Theo đề bài ta có:

\(A=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\)

= \(x_1-x_1x_2+x_2-x_1x_2\)

=\(\left(x_1+x_2\right)-2x_1x_2\)

= \(2\left(m-1\right)-2\left(m-4\right)\)

= 2m-2-2m+8

= 6

Vậy biểu thức \(A=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\) không phụ thuộc vào m

27 tháng 12 2018

 1) vì pt có 1 nghiệm x = 2 nên

\(2^2-2\left(m+1\right).2+m-4=0\)

\(\Leftrightarrow4-4m-4+m-4=0\)

\(\Leftrightarrow-3m=4\)

\(\Leftrightarrow m=-\frac{4}{3}\)

Thay \(m=-\frac{4}{3}\)vào pt đã cho ta đc

\(x^2-2\left(-\frac{4}{3}+1\right)x-\frac{4}{3}-4=0\)

\(\Leftrightarrow x^2+\frac{2x}{3}-\frac{16}{3}=0\)

\(\Leftrightarrow3x^2+2x-16=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{8}{3}\end{cases}}\)

 Vậy nghiệm còn lại của pt là \(x=-\frac{8}{3}\)

2) Có \(\Delta'=\left(m+1\right)^2-m+4\)

               \(=m^2+2m+1-m+4\)

                \(=m^2+m+5\)

                  \(=\left(m+\frac{1}{2}\right)^2+\frac{19}{4}>0\forall m\)

=> Pt luôn có 2 nghiệm phân biệt với mọi m

3) Theo hệ thức Vi-et có

\(x_1+x_2=\frac{-b}{a}=\frac{2\left(m+1\right)}{1}=2m+2\)

\(x_1.x_2=\frac{c}{a}=\frac{m-4}{1}=m-4\)

         a,Ta có: \(A=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\)

                          \(=x_1-x_1x_2+x_2-x_1x_2\) 

                          \(=\left(x_1+x_2\right)-2x_1x_2\)

                           \(=2m+2-2\left(m-4\right)\)

                          \(=2m+2-2m+8\)

                          \(=10\)ko phụ thuộc vào giá trị của m

      b, Từ \(\hept{\begin{cases}x_1+x_2=2m+2\left(1\right)\\x_1+2x_2=3\end{cases}}\)

        \(\Rightarrow\left(x_1+2x_2\right)-\left(x_1+x_2\right)=1-2m\) 

       \(\Rightarrow x_2=1-2m\)

Thế vào (1) ta đc \(x_1+1-2m=2m+2\)

                       \(\Leftrightarrow x_1=4m+1\)

Lại có: \(x_1x_2=m-4\)

\(\Leftrightarrow\left(4m+1\right)\left(1-2m\right)=m-4\)

\(\Leftrightarrow4m-8m^2+1-2m=m-4\)

\(\Leftrightarrow8m^2-m-5=0\)

\(\Delta=1-4.8.\left(-5\right)=161>0\)

Nên pt có 2 nghiệm phân biệt

\(m_1=\frac{1-\sqrt{161}}{16}\)

\(m_2=\frac{1+\sqrt{161}}{16}\)

            c, \(x_1+x_2\ge10x_1x_2+6m-5\)

      \(\Leftrightarrow2m+2\ge10\left(m-4\right)+6m-5\)

      \(\Leftrightarrow2m+2\ge10m-40+6m-5\)

     \(\Leftrightarrow47\ge14m\)

     \(\Leftrightarrow m\le\frac{47}{14}\)

Vậy ............

30 tháng 12 2019

PT : \(x^2-\left(2m-3\right)x+m^2-3m=0\)

a ) Làm tổng luôn ta chỉ cần thay m = 1 là xong

b ) \(\Delta_{\left(x\right)}=\left(2m-3\right)^2-4\left(m^2-3m\right)=4m^2-12m+9-4m^2+12m=9\)\(>0\forall m\in R\Rightarrowđpcm\)

c ) \(\hept{\begin{cases}x_1=m-3;x_2=m\\m>m-3\forall m\in R\\1< x_1< x_2< 6\end{cases}}\)  quay lại a ) m=1 \(\Rightarrow\hept{\begin{cases}x_1=-2\\x_2=1\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=1\\x_2=-2\end{cases}}\)

      \(4< m< 6\)

26 tháng 5 2019

a)  Ta có:

\(\Delta=m^2-4\left(2m-4\right)=m^2-8m+16=\left(m-4\right)^2\)

Mà \(\left(m-4\right)^2\ge0\Leftrightarrow\Delta\ge0\)với mọi m

Vậy phương trình luôn có nghiệm với mọi m

26 tháng 5 2019

b) Áp dụng hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=-m\\x_1.x_2=2m-4\end{cases}}\)

Ta có: \(A=\frac{x_1.x_2}{x_1+x_2}=\frac{2m-4}{-m}=\frac{2m}{-m}-\frac{4}{-m}=-2+\frac{4}{m}\)

Để A đạt giá trị nguyên thì 4/m đạt giá trị nguyên <=> m là ước của 4

Mà m nguyên dương nên m = 1; 2; 4

Vậy m = 1; 2; 4

9 tháng 11 2019

+) Cho pt: 2x+ mx + m - 3 = 0. Chứng minh rằng pt có 2 nghiệm phân biệt

Ta có: \(a=2;b=m;c=m-3.\)
\(\text{Δ}=b^2-4ac=m^2-4.2.\left(m-3\right)=m^2-8m+24-\left(m-4\right)^2+8\)

=> đpcm

+) Cho pt: x2 - 2(2m-1)x + 3m2 - 4 = 0. Chứng minh rằng pt luôn có nghiệm với mọi m;  Tìm m để x12 + x22 - x1x= 5 (*)

Ta có: \(a=1;b'=-\left(2m-1\right);c=3m^2-4\)

\(\text{Δ′}=-\left(2m-1\right)^2-1.\left(3m^2-4\right)=4m^2-4m+1-3m^2+4=m^2-4m+5=\left(m-2\right)^2+1\)

=> Pt có nghiệm với mọi m

ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-1\left(1\right)\\x_1x_2=\frac{c}{a}=3m^2-4\left(2\right)\end{cases}}\)

(*)\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=5\)

    thay (1) và (2) vào (*) ta có: 

\(\left(2m-1\right)^2-3\left(3m^2-4\right)=5\)

\(\Leftrightarrow4m^2-4m+1-9m^2+12=5\)

\(\Leftrightarrow5m^2+4m-8=0\)

\(\Leftrightarrow\begin{cases}m=\frac{-2+2\sqrt{11}}{2}\\m=\frac{-2-2\sqrt{11}}{2}\end{cases}\)

Vậy \(m=\frac{-2+2\sqrt{11}}{2}\)hoặc \(m=\frac{-2-2\sqrt{11}}{2}\)thoả mãn x12 + x22 - x1x= 5

(Câu này mình nghĩ là tìm m để  x12 + x22 + x1x= 5 thì đúng hơn, nếu đúng thì bạn bình luận để mình làm nhé!)

Học tốt nhé!

26 tháng 3 2019

1.a

ta có: \(\Delta'=m^2-\left(m-1\right)\left(m+1\right)\)

 = m^2-m^2+1=1>0

vậy pt luôn có 2 no vs mọi m

26 tháng 3 2019

a)\(\Delta=m^2-\left(m+1\right)\left(m-1\right)=m^2-m^2+1=1\)

Vậy pt luôn có 2 nghiệm với mọi m

b)

Theo hệ thức Vi ét ,ta có:

\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)

mà \(\frac{m+1}{m-1}=5\Rightarrow m=1,5\)

vậy \(x_1\cdot x_2=\frac{2m}{m-1}=6\)

\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}=2+\frac{2}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)

\(\Rightarrow x_1+x_2-x_1\cdot x_2=2+\frac{2}{m-1}-1-\frac{2}{m-1}=1\)

c)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Rightarrow\frac{x_1^2+x_2^2+2x_1x_2+3x_1x_2}{2x_1x_2}=0\Rightarrow\left(x_1+x_2\right)^2+3x_1x_2=0\)

\(\Leftrightarrow\left(\frac{2m}{m-1}\right)^2+\frac{3\left(m+1\right)}{m-1}=0\Rightarrow m=\pm\sqrt{\frac{3}{7}}\)

NV
27 tháng 4 2019

Bạn tự giải pt

\(\Delta'=\left(m-2\right)^2+2m-1=m^2-2m+3=\left(m-1\right)^2+2>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2m+4\\x_1x_2=-2m+1\end{matrix}\right.\)

Trử vế cho vế ta được:

\(x_1+x_2-x_1x_2=3\)

Đây là biểu thức liên hệ 2 biến ko phụ thuộc m