\(x^2-2\left(t-1\right)x+t^2-3=0\)(1)

a, giải pt (1) kh...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 4 2019

Lời giải:
a)

Khi $t=1$ thì PT trở thành:

\(x^2-2=0\Leftrightarrow x^2=2\Rightarrow x=\pm \sqrt{2}\)

b)

Để (1) có nghiệm thì \(\Delta'_{(1)}\geq 0\)

\(\Leftrightarrow (t-1)^2-(t^2-3)\geq 0\)

\(\Leftrightarrow -2t+4\geq 0\)

\(\Leftrightarrow t\leq 2\)

c) Để PT có 2 nghiệm thì \(\Delta'_{(1)}>0\Leftrightarrow t< 2\). Khi đó với $x_1,x_2$ là 2 nghiệm của (1), áp dụng định lý Vi-et ta có:

\(\left\{\begin{matrix} x_1+x_2=2(t-1)\\ x_1x_2=t^2-3\end{matrix}\right.\)

Tổng 2 nghiệm bằng tích 2 nghiệm, nghĩa là:

\(x_1+x_2=x_1x_2\)

\(\Leftrightarrow 2(t-1)=t^2-3\)

\(\Leftrightarrow t^2-2t-1=0\Rightarrow t=1\pm \sqrt{2}\)

Kết hợp với $t< 2$ suy ra $t=1-\sqrt{2}$

31 tháng 3 2019

ai giúp mk vớiT^T

NV
10 tháng 3 2019

Để phương trình có hai nghiệm cùng dấu:

\(\left\{{}\begin{matrix}\Delta>0\\a.c>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(2m-1\right)^2-8\left(m-1\right)>0\\2\left(m-1\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4m^2-12m+9>0\\m>1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m-3\right)^2>0\\m>1\end{matrix}\right.\) \(\Rightarrow m>1\)

Khi đó, ta có \(x_1+x_2=2m-1>2-1>0\Rightarrow\) hai nghiệm đều mang dấu dương

24 tháng 3 2019

a) Thay m=2:

\(x^2-x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1+\sqrt{13}}{2}\\x=\frac{-1-\sqrt{13}}{2}\end{matrix}\right.\)

b) Thay x=2:

\(4-2\left(m-1\right)+m-5=0\)

\(\Leftrightarrow-m+1=0\)

\(\Leftrightarrow m=1\)

Thay m=1:

\(x^2-4=0\)

\(\Leftrightarrow x=\pm2\)

Vậy nghiệm còn lại là -2.

c) Có: \(\Delta=\left(m-1\right)^2-4\left(m-5\right)\)

\(\Delta=m^2-6m+21>0\forall m\)

Vậy pt luôn có nghiệm với mọi m.

24 tháng 3 2019

Nguyễn Việt Lâm giúp mk nhá, thanks bn nhìu :>>>

NV
24 tháng 3 2019

Do x=3 là một nghiệm:

\(\left(m-1\right).9-\left(2m+1\right).3+1=0\)

\(\Leftrightarrow3m-11=0\Leftrightarrow m=\frac{11}{3}\)

Theo Viet: \(x_1x_2=\frac{1}{m-1}\Rightarrow x_2=\frac{1}{\left(m-1\right)x_1}=\frac{1}{\left(\frac{11}{3}-1\right).3}=\frac{1}{8}\)

24 tháng 3 2019

Nguyễn Việt Lâm giúp mk nhá, thanks bn nhìu :>>>

NV
10 tháng 3 2019

Để phương trình có 2 nghiệm trái dấu:

\(ac< 0\Rightarrow m\left(m-4\right)< 0\Rightarrow0< m< 4\)

NV
24 tháng 3 2019

b/ Do x=2 là một nghiệm, thay \(x=2\) vào pt ta được:

\(4-8+m-3=0\Rightarrow m=7\)

\(x_2=\frac{-b}{a}-x_1=4-2=2\)

c/ Để pt có nghiệm \(\Leftrightarrow\Delta'\ge0\)

\(\Rightarrow4-\left(m-3\right)\ge0\Leftrightarrow m\le7\)

d/ Kết hợp điều kiện bài toán và hệ thức Viet ta có:

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1=4x_2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x_2=4\\x_1=4x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{16}{5}\\x_2=\frac{4}{5}\end{matrix}\right.\)

\(x_1x_2=m-3\Rightarrow m-3=\frac{64}{25}\Rightarrow m=\frac{139}{25}\)

24 tháng 3 2019

Nguyễn Việt Lâm giúp mk nhá, thanks bn nhìu :>>>

NV
2 tháng 4 2019

a/ Bạn tự giải

b/ \(\Delta'=\left(1-m\right)^2+3-m=m^2-3m+3=\left(m-\frac{3}{2}\right)^2+\frac{3}{4}>0\) \(\forall m\)

\(\Rightarrow\) pt luôn có 2 nghiệm pb

c/ Theo Viet: \(x_1+x_2=-2\left(1-m\right)\)

Để pt có 2 nghiệm đối nhau \(\Leftrightarrow x_1=-x_2\Leftrightarrow x_1+x_2=0\)

\(\Rightarrow-2\left(1-m\right)=0\Rightarrow m=1\)

2 tháng 4 2019

Nguyễn Việt Lâm giúp mk nhá, tks bn nhìu :>>

15 tháng 4 2018

Câu a :

Thay \(m=2\) vào pt ta có :

\(x^2+8x+7=0\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=-7\end{matrix}\right.\)

Câu b :

Ta có :

\(\Delta=4\left(m+2\right)^2-4\left(4m-1\right)\)

\(=4m^2+16m+16-16m+4\)

\(=4m^2+20>0\)

Do đó phương trình luôn có 2 nghiệm phân biệt .

Theo hệ thức vi - ét ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-2m-4\\x_1\times x_2=4m-1\end{matrix}\right.\)

Mà : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2\times x_1\times x_2=30\)

\(\Leftrightarrow\left(-2m-4\right)^2-2\left(4m-1\right)=30\)

\(\Leftrightarrow4m^2+16m+16-8m+2=30\)

\(\Leftrightarrow4m^2+8m-12=0\)

\(\Leftrightarrow4\left(m^2+2m-3\right)=0\)

\(\Leftrightarrow4\left(m-1\right)\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-1=0\\m+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)

Vậy \(m=-3\) or \(m=1\)