K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 3 2019

Do x=3 là một nghiệm:

\(\left(m-1\right).9-\left(2m+1\right).3+1=0\)

\(\Leftrightarrow3m-11=0\Leftrightarrow m=\frac{11}{3}\)

Theo Viet: \(x_1x_2=\frac{1}{m-1}\Rightarrow x_2=\frac{1}{\left(m-1\right)x_1}=\frac{1}{\left(\frac{11}{3}-1\right).3}=\frac{1}{8}\)

24 tháng 3 2019

Nguyễn Việt Lâm giúp mk nhá, thanks bn nhìu :>>>

Thay x=1 vào pt, ta được;

\(1-2\left(m-1\right)+2m-5=0\)

=>2m-4-2m+2=0

=>-2=0(vô lý)

10 tháng 5 2022

`1)`

$a\big)\Delta=7^2-5.4.1=29>0\to$ PT có 2 nghiệm pb

$b\big)$

Theo Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{7}{5}\\x_1x_2=\dfrac{1}{5}\end{matrix}\right.\)

\(A=\left(x_1-\dfrac{7}{5}\right)x_1+\dfrac{1}{25x_2^2}+x_2^2\\ \Rightarrow A=\left(x_1-x_1-x_2\right)x_1+\left(\dfrac{1}{5}\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\\ \Rightarrow A=-x_1x_2+\left(x_1x_2\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\)

\(\Rightarrow A=-x_1x_2+x_1^2+x_2^2\\ \Rightarrow A=\left(x_1+x_2\right)^2-3x_1x_2\\ \Rightarrow A=\left(\dfrac{7}{5}\right)^2-3\cdot\dfrac{1}{5}=\dfrac{34}{25}\)

a Khi m=1 thì (1) sẽ là x^2+1=0

=>x thuộc rỗng

b: Thay x=1 vào (1),ta được:

1^2-2(m-1)+m^2=0

=>m^2+1-2m+2=0

=>m^2-2m+3=0

=>PTVN

c: Thay x=-3 vào pt, ta được:

(-3)^2-2*(m-1)*(-3)+m^2=0

=>m^2+9+6(m-1)=0

=>m^2+6m+3=0

=>\(m=-3\pm\sqrt{6}\)

b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0

=>-2<m<4

 

2 tháng 1 2022

còn thiếu -b/a > 0  ạ

\(x^2-2\left(m-1\right)x-2m=0\)

\(\text{Δ}=\left(-2m+2\right)^2-4\cdot1\cdot\left(-2m\right)\)

\(=4m^2-8m+4+8m=4m^2+4>=4>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

 

22 tháng 1

a) ∆' = [-(m - 3)]² - (m² + 3)

= m² - 6m + 9 - m² - 3

= -6m + 6

Để phương trình đã cho có 2 nghiệm thì ∆' ≥ 0

⇔ -6m + 6 ≥ 0

⇔ 6m ≤ 6

⇔ m ≤ 1

Vậy m ≤ 1 thì phương trình đã cho luôn có 2 nghiệm

b) Theo định lý Viét, ta có:

x₁ + x₂ = 2(m - 3) = 2m - 6

x₁x₂ = m² + 3

Ta có:

(x₁ - x₂)² - 5x₁x₂ = 4

⇔ x₁² - 2x₁x₂ + x₂² - 5x₁x₂ = 4

⇔ x₁² + 2x₁x₂ + x₂² - 2x₁x₂ - 2x₁x₂ - 5x₁x₂ = 4

⇔ (x₁ + x₂)² - 9x₁x₂ = 4

⇔ (2m - 6)² - 9(m² + 3) = 4

⇔ 4m² - 24m + 36 - 9m² - 27 = 4

⇔ -5m² - 24m + 9 = 4

⇔ 5m² + 24m - 5 = 0

⇔ 5m² + 25m - m - 5 = 0

⇔ (5m² + 25m) - (m + 5) = 0

⇔ 5m(m + 5) - (m + 5) = 0

⇔ (m + 5)(5m - 1) = 0

⇔ m + 5 = 0 hoặc 5m - 1 = 0

*) m + 5 = 0

⇔ m = -5 (nhận)

*) 5m - 1 = 0

⇔ m = 1/5 (nhận)

Vậy m = -5; m = 1/5 thì phương trình đã cho có 2 nghiệm thỏa mãn yêu cầu

a: \(\Delta=\left[-2\left(m-3\right)\right]^2-4\cdot1\cdot\left(m^2+3\right)\)

\(=\left(2m-6\right)^2-4\left(m^2+3\right)\)

\(=4m^2-24m+36-4m^2-12=-24m+24\)

Để phương trình có hai nghiệm thì \(\Delta>=0\)

=>-24m+24>=0

=>-24m>=-24

=>m<=1

b: Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-2\left(m-3\right)\right]}{1}=2\left(m-3\right)\\x_1\cdot x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)

\(\left(x_1-x_2\right)^2-5x_1x_2=4\)

=>\(\left(x_1+x_2\right)^2-4x_1x_2-5x_2x_1=4\)

=>\(\left(x_1+x_2\right)^2-9x_1x_2=4\)

=>\(\left(2m-6\right)^2-9\left(m^2+3\right)=4\)

=>\(4m^2-24m+36-9m^2-27-4=0\)

=>\(-5m^2-24m+5=0\)

=>\(-5m^2-25m+m+5=0\)

=>\(-5m\left(m+5\right)+\left(m+5\right)=0\)

=>(m+5)(-5m+1)=0

=>\(\left[{}\begin{matrix}m+5=0\\-5m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-5\left(nhận\right)\\m=\dfrac{1}{5}\left(nhận\right)\end{matrix}\right.\)

|x1|=3|x2|

=>|2m+2-x2|=|3x2|

=>4x2=2m+2 hoặc -2x2=2m+2

=>x2=1/2m+1/2 hoặc x2=-m-1

Th1: x2=1/2m+1/2

=>x1=2m+2-1/2m-1/2=3/2m+3/2

x1*x2=m^2+2m

=>1/2(m+1)*3/2(m+1)=m^2+2m

=>3/4m^2+3/2m+3/4-m^2-2m=0

=>m=1 hoặc m=-3

TH2: x2=-m-1 và x1=2m+2+m+1=3m+3

x1x2=m^2+2m

=>-3m^2-6m-3-m^2-2m=0

=>m=-1/2; m=-3/2

26 tháng 4 2022

Để PT có nghiệm bằng \(-1\), thay \(x=-1\) ta có:

\(\left(-1\right)^2-\left(2m-3\right)\left(-1\right)+m^2=0\\ \Leftrightarrow1+2m-3+m^2=0\\ \Leftrightarrow m^2+2m-2=0\Leftrightarrow\left[{}\begin{matrix}m=-1+\sqrt{3}\\m=-1-\sqrt{3}\end{matrix}\right.\)

Với \(m=-1+\sqrt{3}\Rightarrow x_1x_2=m^2=4-2\sqrt{3}\Rightarrow x_2=-4+2\sqrt{3}\)

Với \(m=-1-\sqrt{3}\Rightarrow x_1x_2=m^2=4+2\sqrt{3}\Rightarrow x_2=-4-2\sqrt{3}\)

26 tháng 4 2022

Để pt đã cho có nghiệm bằng -1 thì \(1-\left[-\left(2m-3\right)\right]+m^2=0\)\(\Leftrightarrow1+2m-3+m^2=0\)\(\Leftrightarrow m^2+2m-2=0\)\(\Leftrightarrow\left(m+1\right)^2-\left(\sqrt{3}\right)^2=0\)\(\Leftrightarrow\left(m+1+\sqrt{3}\right)\left(m+1-\sqrt{3}\right)=0\)\(\Leftrightarrow m=-1\pm\sqrt{3}\)

Khi đó nghiệm còn lại bằng \(\dfrac{m^2}{1}=\left(-1\pm\sqrt{3}\right)^2=4\mp2\sqrt{3}\)

Khi \(m=-1+\sqrt{3}\) thì nghiệm còn lại bằng \(4-2\sqrt{3}\)

Khi \(m=-1-\sqrt{3}\) thì nghiệm còn lại bằng \(4+2\sqrt{3}\)

25 tháng 3 2018

\(x^2-2\left(m-1\right)x-3-m=0\)  \(\left(1\right)\)

từ \(\left(1\right)\)  ta có \(\Delta'=\left[-\left(m-1\right)\right]^2-\left(-3-m\right)\)

\(\Delta'=m^2-2m+1+m+3\)

\(\Delta'=m^2-m+4\)

25 tháng 3 2018

Câu b, nx cơ bn ơi !