K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 6 2020

Đề đúng là \(m^3-3m\) chứ bạn?

\(\Delta'=m^2-m^3-3m\ge0\)

\(\Leftrightarrow m\left(-m^2+m-3\right)\ge0\)

\(\Rightarrow m\le0\) (do \(-m^2+m-3=-\left(m-\frac{1}{2}\right)^2-\frac{11}{4}< 0;\forall m\))

b/ \(x_1^2+x_2^2\ge8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge8\)

\(\Leftrightarrow4m^2-2m^3+6m\ge8\)

\(\Leftrightarrow m^3-2m^2-3m+4\le0\)

\(\Leftrightarrow\left(m-1\right)\left(m^2-m-4\right)\le0\)

\(\Rightarrow\left[{}\begin{matrix}m\le\frac{1-\sqrt{17}}{2}\\1\le m\le\frac{1+\sqrt{17}}{2}\end{matrix}\right.\) \(\Rightarrow m\le\frac{1-\sqrt{17}}{2}\)

20 tháng 11 2019

1/ \(\Delta'=4-m+1=5-m\)

Để pt có 2 nghiệm pb đều dương <=> \(\left\{{}\begin{matrix}5-m>0\\x_1+x_2>0\\x_1.x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 5\\4>0\left(lđ\right)\\m-1>0\end{matrix}\right.\Leftrightarrow1< m< 5\)

b/ \(x_1^3+x_2^3=40\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)=40\)

\(\Leftrightarrow\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=40\)

\(\Leftrightarrow4\left(4^2-3\left(m-1\right)\right)=40\Leftrightarrow64-12m+12=40\)

\(\Leftrightarrow m=3\)

2/ Ko hiểu ý của câu này ntn :)

\(\text{Δ}=\left(2m-2\right)^2-4\left(m^2-3\right)\)

\(=4m^2-8m+4-4m^2+12=-8m+16\)

Để phương trình có hai nghiệm thì -8m+16>=0

=>-8m>=-16

=>m<=2

\(x_1^2\cdot x_2+x_1\cdot x_2^2=0\)

=>\(x_1x_2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\left(2m-2\right)\left(m^2-3\right)=0\)

hay \(m\in\left\{1;\sqrt{3};-\sqrt{3}\right\}\)

NV
30 tháng 5 2020

a/ Bạn tự giải

b/ \(\Delta'=\left(m+2\right)^2-\left(m+1\right)=m^2+3m+3=\left(m+\frac{3}{2}\right)^2+\frac{3}{4}>0;\forall m\)

\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi m

c/ Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+4\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1\left(1-2x_2\right)+x_2\left(1-2x_1\right)=m^2\)

\(\Leftrightarrow x_1+x_2-4x_1x_2=m^2\)

\(\Leftrightarrow2m+4-4\left(m+1\right)=m^2\)

\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)

13 tháng 12 2019

Câu c) mình sai rồi nên hãy giúp mình câu a và b thôi