K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021

Bước 1: Tìm điều kiện của tham số để phương trình có hai nghiệm phân biệt.

Bước 2: Khi phương trình đã có hai nghiệm phân biệt, ta áp dụng Vi-ét để tìm các giá trị của tham số.

Bước 3. Đối chiếu với điều kiện và kết luận bài toán.

xem tr sách của anh

12 tháng 11 2021

Bài 1:

PT có 2 nghiệm \(\Leftrightarrow\Delta=\left(m+2\right)^2-4\cdot2\ge0\Leftrightarrow m^2+4m-8\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-2-2\sqrt{3}\\m\ge-2+2\sqrt{3}\end{matrix}\right.\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2\end{matrix}\right.\)

Ta có \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{9}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=9x_1x_2\)

\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=18\\ \Leftrightarrow2\left(m+2\right)^2-8=18\\ \Leftrightarrow2m^2+8m+8-8=18\\ \Leftrightarrow m^2+4m-9=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{13}\\m=-2-\sqrt{13}\end{matrix}\right.\left(tm\right)\)

12 tháng 11 2021

Để PT có 2 nghiệm \(\Leftrightarrow\Delta=\left[2\left(m+2\right)\right]^2-4\left(m^2+4\right)\ge0\)

\(\Leftrightarrow4m^2+16m+16-4m^2-16\ge0\\ \Leftrightarrow m\ge0\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1x_2=m^2+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\left(1\right)\\x_1x_2=m^2+4\left(2\right)\\x_1+2x_2=7\left(3\right)\end{matrix}\right.\)

\(\left(3\right)-\left(1\right)=x_2=3-2m\)

Thay vào \(\left(1\right)\Leftrightarrow x_1=2\left(m+2\right)-x_2=2m+4-3+2m=4m+1\)

Thay vào \(\left(2\right)\Leftrightarrow\left(3-2m\right)\left(4m+1\right)=m^2+4\)

\(\Leftrightarrow10m+3-8m^2=m^2+4\\ \Leftrightarrow9m^2-10m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{9}\end{matrix}\right.\left(tm\right)\)

 

28 tháng 12 2021

Điều kiện: \(m+2\ne0\Leftrightarrow m\ne-2\)

Ta có: \(\left(m+2\right)^2-2\left(m-1\right)x+3-m=0\)

\(\Rightarrow\Delta=4\left(m-1\right)^2-4\left(m+2\right)\left(3-m\right)\)

Để phương trình có hai nghiệm thì \(\Delta\ge0\)

\(\Rightarrow4\left(m^2-2m+1\right)-4\left(3m-m^2+6-2m\right)\ge0\)

\(\Leftrightarrow\left(m^2-2m+1\right)\ge\left(m-m^2+6\right)\)

\(\Leftrightarrow2m^2-3m-5\ge0\) \(\Leftrightarrow\left\{{}\begin{matrix}m\le-1\\m\ge\dfrac{5}{2}\end{matrix}\right.\)

Áp dụng định lí Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_1=\dfrac{2\left(m-1\right)}{m+2}\\x_1x_2=\dfrac{3-m}{m+2}\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=x_1+x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=x_1+x_2\)

\(\Leftrightarrow\left(\dfrac{2\left(m-1\right)}{m+2}\right)^2-2\dfrac{3-m}{m+2}=\dfrac{2\left(m-1\right)}{m+2}\)

\(\Leftrightarrow\dfrac{4\left(m^2-2m+1\right)}{m^2+4m+4}=\dfrac{2m-2+6-2m}{m+2}\)

\(\Leftrightarrow\dfrac{4m^2-8m+4}{m^2+4m+4}=\dfrac{4}{m+2}\)

\(\Leftrightarrow\left(4m^2-8m+4\right)\left(m+2\right)=4m^2+16m+16\)

\(\Leftrightarrow\left(4m^3-8m^2+4m+8m^2-16m+8\right)=4m^2+16m+16\)

\(\Leftrightarrow\left(4m^3-4m^2-28m-8\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}m\approx3,3\\m\approx-0,3\left(loai\right)\end{matrix}\right.\)

Vậy m \(\in\left(3;4\right)\)

Câu A

NV
27 tháng 7 2021

Phương trình có 2 nghiệm khi \(\Delta'=m^2-4\ge0\Rightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=4\end{matrix}\right.\)

\(\left(\dfrac{x_1}{x_2}\right)^2+\left(\dfrac{x_2}{x_1}\right)^2=3\)

\(\Rightarrow\left(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}\right)^2-2=3\)

\(\Rightarrow\left(\dfrac{x_1^2+x_2^2}{x_1x_2}\right)^2=5\)

\(\Rightarrow\left(\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{4}\right)^2=5\)

\(\Rightarrow\left(m^2-2\right)^2=5\)

\(\Rightarrow m^2=2+\sqrt{5}\)

\(\Rightarrow m=\pm\sqrt{2+\sqrt{5}}\)

27 tháng 7 2021

tại sao lại có -2 ạ

4 tháng 7 2020

Để phương trình có 2 nghiệm phân biệt :

\(\Delta>0< =>\left(-2\right)^2-4\left(-m\right)>0\)

\(< =>4+4m>0\)

\(< =>4m>-4\)

\(< =>m>-1\)

15 tháng 7 2019

1) \(x^2-2mx+m-2=0\) (1) 

pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\) 

=> pt luôn có 2 nghiệm phân biệt x1, x2 

Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)

\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)

xin 1slot sáng giải