Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để: \(\frac{2n+3}{3n+5}\)là phân số tối giản thì ƯCLN(2n+3;3n+5)=1
Gọi ƯCLN(2n+3;3n+5) = d
Ta có: 2n+3 chia hết cho d => 3(2n+3) chia hết cho d hay 6n+9 chia hết cho d (1)
Mặt khác: 3n+5 chia hết cho d => 2(3n+5) chia hết cho d hay 6n+10 chia hết cho d (2)
Từ (1) và (2) => (6n+10)-(6n+9) chia hết cho d => 1 chia hết cho d => d=1 hoặc d=-1
Do: d= ƯCLN(2n+3;3n+5) => d=1 => \(\frac{2n+3}{3n+5}\)là phân số tối giản => đpcm
Gọi d là UCLN của tử và mẫu
12n+1 chia hết cho d 60n+5 chia hết cho d
=>
30n+2 chia hết cho d 60n+4 chia hết cho d
=>(60n+5)-(60n+4) chia hết cho d
=> 1 chia hết cho d
d thuộc Ư(1)=1
ƯCLN(12n+1;30n+2)=1
Vậy 12n+1/30n+2 là p/s tối giản
Gọi UCLN(n+1,n-3)=d
Ta có:n+1 chia hết cho d
n-3 chia hết cho d
=>(n+1)-(n-3) chia hết cho d
=>4 chia hết cho d
=>d=1,2,4
Nếu d=4 thì n+1=4k(k thuộc N) =>n=4k-1
n-3=4l(l thuộc N) =>n=4l+3=4l-1+4
Để d=1 thì n\(\ne\)4k-1
Nếu d=2 thì n+1=2k(k thuộc N) =>n=2k-1
n-3=2l(l thuộc N) =>n=2l+3 =2l-1+4
Để d=1 thì n\(\ne\)2k-1