K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2017

Để: \(\frac{2n+3}{3n+5}\)là phân số tối giản thì ƯCLN(2n+3;3n+5)=1

Gọi ƯCLN(2n+3;3n+5) = d

Ta có: 2n+3 chia hết cho d => 3(2n+3) chia hết cho d hay 6n+9 chia hết cho d              (1)

Mặt khác: 3n+5 chia hết cho d => 2(3n+5) chia hết cho d hay 6n+10 chia hết cho d            (2)

Từ (1) và (2) => (6n+10)-(6n+9) chia hết cho d => 1 chia hết cho d  => d=1 hoặc d=-1

Do: d= ƯCLN(2n+3;3n+5)   => d=1  => \(\frac{2n+3}{3n+5}\)là phân số tối giản  => đpcm

21 tháng 2 2017

Gọi d là  UCLN của tử và mẫu

12n+1 chia hết cho d                  60n+5 chia hết cho d

                                =>

30n+2 chia hết cho d                  60n+4 chia hết cho d

=>(60n+5)-(60n+4) chia hết cho d

=> 1 chia hết cho d

d thuộc Ư(1)=1

ƯCLN(12n+1;30n+2)=1

Vậy 12n+1/30n+2 là p/s tối giản

25 tháng 4 2020

Để phân số n+1/2n+3 là phân số tối giản thì (n+1; 2n+3) =1

Gọi (n+1; 2n+3) =d => n+1 \(⋮\)d; 2n+3 \(⋮\)d

=> (2n+3) - (n+1) \(⋮\)d

=> (2n+3) -2(n+1) \(⋮\)d

=> 2n+3 -2n -2 \(⋮\)d

=> 1 \(⋮\)d

=> n+1/2n+3 là phân số tối giản

Vậy...

25 tháng 4 2020

Gọi d là ƯC(n+1 ; 2n + 3)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

=> ( 2n + 3 ) - ( 2n + 2 ) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(n +1 ; 2n + 3) = 1

=> \(\frac{n+1}{2n+3}\)tối giản ( đpcm )

8 tháng 6 2017

gọi d là ƯCLN ( n + 2 ; 2n + 3 )

Ta có : n + 2 \(⋮\)\(\Rightarrow\)2 . ( n + 2 ) \(⋮\)d ( 1 )

           2n + 3 \(⋮\)d ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)2 . ( n + 2 ) - ( 2n + 3 )

= ( 2n + 4 ) - ( 2n + 3 ) = 1 \(⋮\)d

\(\Rightarrow\)d = 1

Mà phân số tối giản thì có ƯCLN của tử số và mẫu số bằng 1

Vậy phân số \(\frac{n+2}{2n+3}\)là phân số tối giản

8 tháng 6 2017

để phân số là phân số tối giản điều kiên là : \(\left(n+2;2n+3\right)=1\)

Ta gọi ước chung lớn nhất của \(n+2;2n+3\)là \(d\)ta có: \(\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+2\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+4⋮d\\2n+3⋮d\end{cases}}}\)

\(\Rightarrow n+4-\left(n+3\right)⋮d\Rightarrow n+4-n-3⋮d\)\(\Rightarrow1⋮d\Leftrightarrow1\)

do đó \(UCLN\left(n+2;2n+3\right)=1\)vậy phân số là phân số tối giản

14 tháng 4 2018

Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(2n+1;3n+2\right)=1\)

\(\Leftrightarrow\dfrac{2n+1}{3n+2}\) tối giản

14 tháng 4 2018

Mình chưa hiểu đề cho lắm. Bạn giải thích giúp mình được không?

26 tháng 4 2018

gọi d là ƯC(2n+1; 3n+2)     (1)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+3\right)-\left(6n+4\right)⋮d\)

\(\Rightarrow6n+3-6n-4⋮d\)

\(\Rightarrow\left(6n-6n\right)-\left(4-3\right)⋮d\)

\(\Rightarrow0-1⋮d\)

\(\Rightarrow-1⋮d\)

\(\Rightarrow d=\pm1\)    (2)

\(\left(1\right)\left(2\right)\RightarrowƯC\left(2n+1;3n+2\right)=\pm1\)

=> 2n+1/3n+2 là phân số tối giản

7 tháng 3 2016

 Gọi d = (3n;3n+1) (d thuộc N) 
=> (3n) chia hết cho d và (3n + 1) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 (vì d thuộc N) 
=> ƯCLN(3n; 3n + 1) = 1 
=> Phân số 3n/3n+1 tối giản với mọi n thuộc N

7 tháng 3 2016

vì 3n và 3n+1 là 2 số nguyên tố cùng nhau và có ƯCLN=1

mà ps tối giản cx có ƯCLN=1

=>\(\frac{3n}{3n+1}\)\(là\)phân số tối giản