\(x^2+3x-10=0\)

Không giải phương trình

Tính

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2020

Áp dụng hệ thức Vi-et,ta có :

\(\hept{\begin{cases}x_1+x_2=-3\\x_1x_2=-10\end{cases}}\)

Ta có : \(\frac{2x_1^2}{x_1+x_2}+2x_2=\frac{2x_1^2+2x_1x_2+2x_2^2}{x_1+x_2}=\frac{2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+2x_1x_2}{x_1+x_2}\)

\(=\frac{2\left[\left(-3\right)^2-2.\left(-10\right)\right]+2.\left(-10\right)}{-3}=\frac{-38}{3}\)

23 tháng 3 2020

x2+3x-10=0

<=> x2+5x-2x-10=0

<=> x(x+5)-2(x+5)=0

<=> (x+5)(x-2)=0

<=> \(\orbr{\begin{cases}x+5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}}\)

Vậy x=-5; x=2

29 tháng 4 2020

Theo định lí viet: \(x_1x_2=-10;x_1+x_2=-3\)

=> \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=\frac{-3}{-10}=\frac{3}{10}\)

Gửi link fb cho mình để mình gửi đáp án cho
9 tháng 3 2019

Phương thảo nhé

NV
8 tháng 4 2022

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)

Ta có:

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=12^2-2.4=136\)

\(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=12+2\sqrt{4}=16\Rightarrow\sqrt{x_1}+\sqrt{x_2}=4\)

\(\Rightarrow T=\dfrac{136}{4}=34\)

8 tháng 4 2022

pt đã cho có \(\Delta'=\left(-6\right)^2-1.4=32>0\)

\(\Rightarrow\)pt đã cho có 2 nghiệm phân biệt 

Áp dụng hệ thức Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=12\\x_1x_2=4\end{cases}}\)

Ta có \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=12^2-2.4=136\)

Mặt khác \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=12+2\sqrt{4}=16\)\(\Rightarrow\sqrt{x_1}+\sqrt{x_2}=4\)

\(\Rightarrow T=\frac{136}{4}=34\)

11 tháng 3 2020

a ) Thay m =0 vào phương trình ta được: \(x^2-2x=0\Rightarrow x\left(x-2\right)=0\)0

                                                            \(\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

                                                                  

12 tháng 3 2020

Phương trình \(x^2-2x-2m^2=0\)có các hệ số a = 1; b = -2; c = -2m2

\(\Rightarrow\Delta=b^2-4ac=\left(-2\right)^2-4.1.\left(-2m^2\right)=4+8m^2\)(luôn dương)

Giả sử phương trình có 2 nghiệm x1; x2 thì \(\hept{\begin{cases}x_1=\frac{2+\sqrt{4+8m^2}}{2}=1+\sqrt{1+2m^2}\\x_2=\frac{2-\sqrt{4+8m^2}}{2}=1-\sqrt{1+2m^2}\end{cases}}\)

Thay vào dữ kiện \(x_1^2=4x_2^2\), ta được:

\(\left(1+\sqrt{1+2m^2}\right)^2=4\left(1-\sqrt{1+2m^2}\right)^2\)

\(\Leftrightarrow1+1+2m^2+2\sqrt{1+2m^2}=4-8\sqrt{1+2m^2}+4+8m^2\)

\(\Leftrightarrow10\sqrt{1+2m^2}=6m^2+6\)

Bình phương hai vế:

\(100\left(1+2m^2\right)=36m^4+72m^2+36\)

\(\Leftrightarrow36m^4-128m^2-64=0\)

Đặt \(m^2=t\left(t\ge0\right)\)

Phương trình trở thành \(36t^2-128t-64=0\)

\(\Delta=128^2+4.36.64=25600,\sqrt{\Delta}=160\)

\(\Rightarrow\orbr{\begin{cases}t=\frac{128+160}{72}=4\\t=\frac{128-160}{72}=\frac{-4}{9}\left(L\right)\end{cases}}\)

Vậy t = 4\(\Rightarrow m=\pm2\)

Vậy khi m =-2 hoặc 2 thì  phương trình có 2 nghiệm \(x_1;x_2\)khác 0 và thỏa mãn điều kiện \(x_1^2=4x_2^2\)

7 tháng 6 2020

theo viet ta có

x1+x2=-3

x1.x2=-4

a) ta quy đồng đc

(x1+x2)/(x1.x2)=-3/(-4)=3/4

b) (x1+x2)^2 -2x1.x2=(-3)^2 - 2.(-4)=17

d) (x1+x2)^3 - 3x1x2(x1+x2)= (-3)^3 -3(-4)(-3)=-9

Xin lỗi bạn nha tại bàn phím mk đơ nên mk ko viết phân sô đc