Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2+3x-10=0
<=> x2+5x-2x-10=0
<=> x(x+5)-2(x+5)=0
<=> (x+5)(x-2)=0
<=> \(\orbr{\begin{cases}x+5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}}\)
Vậy x=-5; x=2
Theo định lí viet: \(x_1x_2=-10;x_1+x_2=-3\)
=> \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=\frac{-3}{-10}=\frac{3}{10}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)
Ta có:
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=12^2-2.4=136\)
\(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=12+2\sqrt{4}=16\Rightarrow\sqrt{x_1}+\sqrt{x_2}=4\)
\(\Rightarrow T=\dfrac{136}{4}=34\)
pt đã cho có \(\Delta'=\left(-6\right)^2-1.4=32>0\)
\(\Rightarrow\)pt đã cho có 2 nghiệm phân biệt
Áp dụng hệ thức Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=12\\x_1x_2=4\end{cases}}\)
Ta có \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=12^2-2.4=136\)
Mặt khác \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=12+2\sqrt{4}=16\)\(\Rightarrow\sqrt{x_1}+\sqrt{x_2}=4\)
\(\Rightarrow T=\frac{136}{4}=34\)
a ) Thay m =0 vào phương trình ta được: \(x^2-2x=0\Rightarrow x\left(x-2\right)=0\)0
\(\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Phương trình \(x^2-2x-2m^2=0\)có các hệ số a = 1; b = -2; c = -2m2
\(\Rightarrow\Delta=b^2-4ac=\left(-2\right)^2-4.1.\left(-2m^2\right)=4+8m^2\)(luôn dương)
Giả sử phương trình có 2 nghiệm x1; x2 thì \(\hept{\begin{cases}x_1=\frac{2+\sqrt{4+8m^2}}{2}=1+\sqrt{1+2m^2}\\x_2=\frac{2-\sqrt{4+8m^2}}{2}=1-\sqrt{1+2m^2}\end{cases}}\)
Thay vào dữ kiện \(x_1^2=4x_2^2\), ta được:
\(\left(1+\sqrt{1+2m^2}\right)^2=4\left(1-\sqrt{1+2m^2}\right)^2\)
\(\Leftrightarrow1+1+2m^2+2\sqrt{1+2m^2}=4-8\sqrt{1+2m^2}+4+8m^2\)
\(\Leftrightarrow10\sqrt{1+2m^2}=6m^2+6\)
Bình phương hai vế:
\(100\left(1+2m^2\right)=36m^4+72m^2+36\)
\(\Leftrightarrow36m^4-128m^2-64=0\)
Đặt \(m^2=t\left(t\ge0\right)\)
Phương trình trở thành \(36t^2-128t-64=0\)
\(\Delta=128^2+4.36.64=25600,\sqrt{\Delta}=160\)
\(\Rightarrow\orbr{\begin{cases}t=\frac{128+160}{72}=4\\t=\frac{128-160}{72}=\frac{-4}{9}\left(L\right)\end{cases}}\)
Vậy t = 4\(\Rightarrow m=\pm2\)
Vậy khi m =-2 hoặc 2 thì phương trình có 2 nghiệm \(x_1;x_2\)khác 0 và thỏa mãn điều kiện \(x_1^2=4x_2^2\)
theo viet ta có
x1+x2=-3
x1.x2=-4
a) ta quy đồng đc
(x1+x2)/(x1.x2)=-3/(-4)=3/4
b) (x1+x2)^2 -2x1.x2=(-3)^2 - 2.(-4)=17
d) (x1+x2)^3 - 3x1x2(x1+x2)= (-3)^3 -3(-4)(-3)=-9
Xin lỗi bạn nha tại bàn phím mk đơ nên mk ko viết phân sô đc
Áp dụng hệ thức Vi-et,ta có :
\(\hept{\begin{cases}x_1+x_2=-3\\x_1x_2=-10\end{cases}}\)
Ta có : \(\frac{2x_1^2}{x_1+x_2}+2x_2=\frac{2x_1^2+2x_1x_2+2x_2^2}{x_1+x_2}=\frac{2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+2x_1x_2}{x_1+x_2}\)
\(=\frac{2\left[\left(-3\right)^2-2.\left(-10\right)\right]+2.\left(-10\right)}{-3}=\frac{-38}{3}\)