Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
1.
Khi $m=-1$ thì pt trở thành: $x^2+4x+2=0$
$\Leftrightarrow (x+2)^2=2$
$\Leftrightarrow x+2=\pm \sqrt{2}$
$\Leftrightarrow x=-2\pm \sqrt{2}$
2.
Ta thấy: $\Delta'=(m-1)^2+2m=m^2+1>0$ với mọi $m\in\mathbb{R}$
Do đó pt luôn có 2 nghiệm pb với mọi $m$
Áp dụng định lý Viet:
$x_1+x_2=2(m-1)$
$x_1x_2=-2m$
Khi đó:
$x_1^2+x_1-x_2=5-2m=3-2(m-1)=3-x_1-x_2$
$\Leftrightarrow x_1^2+2x_1-3=0$
$\Leftrightarrow (x_1-1)(x_1+3)=0$
$\Leftrightarrow x_1=1$ hoặc $x_1=-3$
Nếu $x_1=1$
$\Leftrightarrow x_2+1=2m-2$ và $x_2=-2m$
$\Rightarrow 2x_2+1=-2$
$\Leftrightarrow x_2=\frac{-3}{2}$
$-2m=x_1x_2=\frac{-3}{2}$
$m=\frac{3}{4}$
-------------
Nếu $x_1=-3$
$\Leftrightarrow x_2-3=2m-2$ và $-3x_2=-2m$
$\Leftrightarrow m=\frac{-3}{4}$
a) Thay m=-2 vào phương trình, ta được:
\(x^2-\left(-x\right)-2=0\)
\(\Leftrightarrow x^2+x-2=0\)
a=1; b=1; c=-2
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{-2}{1}=-2\)
a: Khi m=1 thì phương trình sẽ là x^2-2x-3=0
=>x=3 hoặc x=-1
b: Δ=(m+1)^2-4(m-4)
=m^2+2m+1-4m+16
=m^2-2m+17
=(m-1)^2+16>=16>0
=>Phương trình luôn có hai nghiệm phân biệt
x1+x2=m+1;x2x1=m-4
(x1^2-mx1+m)(x2^2-mx2+m)=2
=>(x1*x2)^2-m*x2*x1^2+m*x1^2-m*x1*x2^2+m*x1*x2-m^2*x1+m*x2^2-m^2*x2+m^2=2
=>(x1*x2)^2-m*x1*x2(x1+x2)+mx1^2+m*(m-4)-m^2*x1+m*x2^2-m^2*x2+m^2=2
=>(m-4)^2-m*(m-4)(m+1)+m(m-4)-m^2(x1+x2)+m*(x1^2+x2^2)+m^2=2
=>(m-4)^2-m(m^2-3m-4)+m^2-4m-m^2(m+1)+m*[(m+1)^2-2(m-4)]+m^2=2
=>m^2-8m+16-m^3+3m^2+4m+m^2-4m-m^3-m^2+m^2+m[m^2+2m+1-2m+8]=2
=>-2m^3+3m^2-8m+16+m^3+9m-2=0
=>-m^3+3m^2+m+14=0
=>\(m\simeq4,08\)
a, \(x^2-4x+3=0\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Vậy tập nghiệm của phương trình là S = { 1 ; 3 }
b, Ta có : \(\Delta=\left(2m+2\right)^2-4\left(2m-5\right)=4m^2+8m+4-8m+20=4m^2+24>0\forall m\)
Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=\frac{c}{a}=2m-5\end{cases}}\)
Ta có : \(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x_2^2-2mx_2-x_1+2m-3\right)=19.1=1.19\)
TH1 : \(\hept{\begin{cases}x_1^2-2mx_1-x_2+2m-3=19\\x_2^2-2mx_2-x_1+2m-3=1\end{cases}}\)
Lấy phương trình (1) + (2) ta được :
\(x_1^2+x_2^2-2mx_1-2mx_2-x_2-x_1+4m-6=20\)
mà \(\left(x_1+x_2\right)^2=4m^2+8m+4\Rightarrow x_1^2+x_2^2=4m^2+8m+4-2x_1x_2\)
\(=4m^2+8m+4-2\left(2m-5\right)=4m^2+4m-6\)
\(\Leftrightarrow4m^2+4m-6-2m\left(2m-2\right)-\left(2m-2\right)+4m-6=20\)
\(\Leftrightarrow4m^2+4m-6-4m^2+4m-2m+2+4m-6=20\)
\(\Leftrightarrow10m=30\Leftrightarrow m=3\)tương tự với TH2, nhưng em ko chắc lắm vì dạng này em chưa làm bao giờ
\(\Delta'=\left[-\left(m+4\right)\right]^2-1\left(m^2-8\right)=m^2+8m+16-m^2+8=8m+24\)
Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow8m+24\ge0\Leftrightarrow m\ge-3\)
Áp dụng định lý Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=2m+8\\x_1x_2=m^2-8\end{matrix}\right.\)
\(A=x^2_1+x^2_2-x_1-x_2\\ =\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)\\ =\left(2m+8\right)^2-2\left(m^2-8\right)-\left(2m+8\right)\\ =4m^2+32m+64-2m^2+16-2m-16\\ =2m^2+30m+64\)
Amin=\(-\dfrac{97}{2}\)\(\Leftrightarrow m=-\dfrac{15}{2}\)
\(B=x^2_1+x^2_2-x_1x_2\\ =\left(x_1+x_2\right)^2-3x_1x_2\\ =\left(2m+8\right)^2-3\left(m^2-8\right)\\ =4m^2+32m+64-3m^2+24\\ =m^2+32m+88\)
Bmin=-168\(\Leftrightarrow\)m=-16
a, với =-3
\(=>x^2-6x+6=0\)
\(\Delta=\left(-6\right)^2-4.6=12>0\)
=>pt có 2 nghiệm phân biệt x3,x4
\(=>\left[{}\begin{matrix}x3=\dfrac{6+\sqrt{12}}{2}=3+\sqrt{3}\\x4=\dfrac{6-\sqrt{12}}{2}=3-\sqrt{3}\end{matrix}\right.\)
b, \(\Delta=\left(2m\right)^2-4\left(m^2+m\right)=4m^2-4m^2-4m=-4m\)
pt đã cho đề bài có 2 nghiệm phân biệt x1,x2 khi
\(-4m>0< =>m< 0\)
theo vi ét \(=>\left\{{}\begin{matrix}x1+x2=-2m\\x1x2=m^2+m\end{matrix}\right.\)
có \(\left(x1-x2\right)\left(x1^2-x2^2\right)=32\)
\(< =>\left(x1-x2\right)^2\left(x1+x2\right)=32\)
\(< =>\left[x1^2-2x1x2+x2^2\right]\left(-2m\right)=32\)
\(< =>\left[\left(x1+x2\right)^2-4x1x2\right]\left(-2m\right)=32\)
\(< =>\left[\left(-2m\right)^2-4\left(m^2+m\right)\right]\left(-2m\right)=32< =>m=2\)(loại)
Vậy \(m\in\varnothing\)
Lời giải:
a. Với $m=-3$ thì pt trở thành:
$x^2-6x+6=0\Leftrightarrow x=3\pm \sqrt{3}$
b. Để pt có 2 nghiệm thì: $\Delta'=m^2-(m^2+m)=-m\geq 0$
$\Leftrightarrow m\leq 0$
Áp dụng định lý Viet: $x_1+x_2=-2m; x_1x_2=m^2+m$
Khi đó:
$(x_1-x_2)(x_1^2-x_2^2)=32$
$\Leftrightarrow (x_1-x_2)^2(x_1+x_2)=32$
$\Leftrightarrow [(x_1+x_2)^2-4x_1x_2](x_1+x_2)=32$
$\Leftrightarrow [(-2m)^2-4(m^2+m)](-2m)=32$
$\Leftrightarrow 8m^2=32$
$\Leftrightarrow m^2=4$
$\Rightarrow m=-2$ (do $m\leq 0$)
Vây.........
1,
Thay m=4 phuong trình đã cho trở thành : \(x^2-9x+20=0\)
\(\Delta=81-80=1\) \(>0\) nên phương trình đã cho có hai nghiệm phân biệt \(x_1=5\) và \(x_2=4\).
2,
Ta có \(\Delta=\left(2m+1\right)^2-4\left(m^2+m\right)=1>0\) với mọi \(m\) nên phuong trình đã cho có hai nghiệm phân biệt
\(x_1,x_2\) với mọi \(m.\)
Áp dụng định lý Vi-et : \(\hept{\begin{cases}x_1+x_2=2m+1\\x_1x_2=m^2+m\end{cases}}\)
\(\Rightarrow x_1^2+x_2^2-5x_1x_2=-17\) \(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x=-17\Leftrightarrow\left(2m+1\right)^2-7\left(m^2+m\right)=-17\Leftrightarrow m^2+m-6=0\)
\(\Rightarrow\hept{\begin{cases}m=-3\\m=2\end{cases}}\)
a)
\(m=6\)
\(\Rightarrow x^2+5x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
b)
\(\left|x_1-x_2\right|=3\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=9\)
\(\Leftrightarrow x_1^2=2x_1x_2+x^2_2=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9\)
Mà \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1-x_2=m\end{matrix}\right.\)
\(\Rightarrow25-4m=9\)
\(\Leftrightarrow4m=16\)
\(\Leftrightarrow m=4\)
a ) Thay m =0 vào phương trình ta được: \(x^2-2x=0\Rightarrow x\left(x-2\right)=0\)0
\(\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Phương trình \(x^2-2x-2m^2=0\)có các hệ số a = 1; b = -2; c = -2m2
\(\Rightarrow\Delta=b^2-4ac=\left(-2\right)^2-4.1.\left(-2m^2\right)=4+8m^2\)(luôn dương)
Giả sử phương trình có 2 nghiệm x1; x2 thì \(\hept{\begin{cases}x_1=\frac{2+\sqrt{4+8m^2}}{2}=1+\sqrt{1+2m^2}\\x_2=\frac{2-\sqrt{4+8m^2}}{2}=1-\sqrt{1+2m^2}\end{cases}}\)
Thay vào dữ kiện \(x_1^2=4x_2^2\), ta được:
\(\left(1+\sqrt{1+2m^2}\right)^2=4\left(1-\sqrt{1+2m^2}\right)^2\)
\(\Leftrightarrow1+1+2m^2+2\sqrt{1+2m^2}=4-8\sqrt{1+2m^2}+4+8m^2\)
\(\Leftrightarrow10\sqrt{1+2m^2}=6m^2+6\)
Bình phương hai vế:
\(100\left(1+2m^2\right)=36m^4+72m^2+36\)
\(\Leftrightarrow36m^4-128m^2-64=0\)
Đặt \(m^2=t\left(t\ge0\right)\)
Phương trình trở thành \(36t^2-128t-64=0\)
\(\Delta=128^2+4.36.64=25600,\sqrt{\Delta}=160\)
\(\Rightarrow\orbr{\begin{cases}t=\frac{128+160}{72}=4\\t=\frac{128-160}{72}=\frac{-4}{9}\left(L\right)\end{cases}}\)
Vậy t = 4\(\Rightarrow m=\pm2\)
Vậy khi m =-2 hoặc 2 thì phương trình có 2 nghiệm \(x_1;x_2\)khác 0 và thỏa mãn điều kiện \(x_1^2=4x_2^2\)