Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hệ thức Vi-ét,ta có :
\(\hept{\begin{cases}x_1+x_2=\frac{m-1}{1}=m-1\\x_1x_2=\frac{2m-6}{1}=2m-6\end{cases}}\)
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=\frac{5}{2}\)
\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{5}{2}\)
\(\Leftrightarrow\frac{\left(m-1\right)^2-2\left(2m-6\right)}{2m-6}=\frac{m^2-6m+13}{2m-6}=\frac{5}{2}\)
\(\Leftrightarrow2m^2-12m+26=10m-30\Leftrightarrow2m^2-22m+56=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=4\\m=7\end{cases}}\)
Vây .....
a
Xét \(\Delta'=9-2m-1=8-2m\ge0\Leftrightarrow m\le4\)
b
Theo Viete ta dễ có:\(x_1+x_2=6;x_1x_2=2m-1\)
Ta có:\(A=\left(x_1-1\right)^2\left(x_2-1\right)^2=\left[x_1x_2-\left(x_1+x_2\right)+1\right]^2=\left(2m-1-6+1\right)^2\)
\(=\left(2m-6\right)^2\le\left(2\cdot4-6\right)^2=4\)
Đẳng thức xảy ra tại m=4
Vậy ............................
dùng đen ta phẩy để giải pt.
kết quả khi m > \(\frac{5}{6}\)thì pt có nghiệm
theo vi-ét ta có: x1 + x2 = \(\frac{-b}{a}=\frac{2\left(m-2\right)}{1}=2\left(m-2\right)\)(1)
x1 . x2 = \(\frac{c}{a}=\frac{m^2+2m-3}{1}=m^2+2m-3\)(2)
theo đầu bài ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)
<=> \(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)(3)
thay (1) và (2) vào (3) r tính m. kết quả khi m=2 thì pt có nghiệm thỏ mãn đk đó.
Ta có : \(x^2-6x+2m+1=0\left(a=1;b=-6;c=2m+1\right)\)
\(\Delta=\left(-6\right)^2-4\left(2m+1\right)=36-8m-4=32-8m\)
Để phương trình có 2 nghiệm phân biệt \(32-8m>0\)hay \(\Delta>0\)
\(\Leftrightarrow8m>32\Leftrightarrow m< 4\)
Áp dụng hệ thức Vi et ta có : \(\hept{\begin{cases}S=x_1+x_2=\frac{-b}{a}=\frac{6}{1}=6\\P=x_1x_2=\frac{c}{a}=\frac{2m+1}{1}=2m+1\end{cases}}\)(*)
Theo bài ra ta cớ : \(\frac{1}{x_1^2}+\frac{1}{x_2^2}=8\)Tự thay vào làm nốt nhé !
bạn làm sai phần tìm đk m rồi nhé
Để phương trình có 2 nghiệm : \(\Delta>0\)
\(< =>32-8m>0\)
\(< =>m>\frac{-32}{-8}=4\)
Theo viet \(\hept{\begin{cases}x_1x_2=2m+1\\x_1+x_2=6\end{cases}}\)
Khi đó : \(\frac{1}{x_1^2}+\frac{1}{x_2^2}=8\)
\(< =>\frac{x_1^2+x_2^2}{\left(x_1x_2\right)^2}=8\)
\(< =>8\left(2m+1\right)^2+2x_1x_2=x_1^2+x_2^2+2x_1x_2\)
\(< =>8\left(4m^2+4m+1\right)+2\left(2m+1\right)=\left(x_1+x_2\right)^2\)
\(< =>24m^2+24m+8+4m+2=36\)
\(< =>24m^2+28m-26=0\)
\(< =>\orbr{\begin{cases}m=\frac{-7+\sqrt{205}}{12}< 4\\m=\frac{-7-\sqrt{205}}{12}< 4\end{cases}}\left(ktmđk:m>4\right)\)
Vậy không có giá trị nào m thỏa mãn đẳng thức trên
\(\Delta'=\left(m-1\right)^2-m^2+m-1=m^2-2m+1-m^2+m-1=-m.\)
Để phương trình có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow-m\ge0\Leftrightarrow m\le0\)
Theo vi ét:
\(\hept{\begin{cases}x_1+x_2=-2\left(m-1\right)\\x_1.x_2=m^2-m+1=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\)
\(\left|x_1\right|+\left|x_2\right|=4\Leftrightarrow x_1+x_2+2\left|x_1.x_2\right|=16\)
\(\Leftrightarrow1-2m+2\left|m^2-m+1\right|=16\)
\(\Leftrightarrow1-2m+2m^2-2m+2=16\)(Vì \(m^2-m+1>0\Rightarrow\left|m^2-m+1\right|=m^2-m+1\))
\(\Leftrightarrow2m^2-4m-13=0\)
Đến đây bạn tự giải \(\Delta\)tìm m đối chiếu điều kiện là ok.
Pt có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow\left(m-1\right)^2-4\left(5m-5\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-20m+20\ge0\)
\(\Leftrightarrow m^2-22m+21\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}m\le1\\m\ge21\end{cases}}\)
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=1-m\\x_1x_2=5m-5\end{cases}}\)
Chắc đề là \(x_1^2+x_2^2=3x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2=5x_1x_2\)
\(\Leftrightarrow\left(1-m\right)^2=5.\left(5m-5\right)\)
\(\Leftrightarrow1-2m+m^2=25m-25\)
\(\Leftrightarrow m^2-27m+26=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=26\\m=1\end{cases}\left(Tm\right)}\)
Vậy .........
hỏi lắm thế bn
Theo hệ thức Viet : \(\hept{\begin{cases}x_1x_2=\frac{c}{a}=2m+1\\x_1+x_2=-\frac{b}{a}=6\end{cases}}\)
Khi đó : \(x_1^2\left(x_2+1\right)+x_2^2\left(x_1+1\right)>0\)
\(< =>x_1^2x_2+x_1^2+x_2^2x_1+x_2^2>0\)
\(< =>\left(x_1x_2\right)\left(x_1+x_2\right)+\left(x_1+x_2\right)^2-2x_1x_2>0\)
\(< =>6\left(2m+1\right)+6^2-2\left(2m+1\right)>0\)
\(< =>12m+6+36-4m-2>0\)
\(< =>8m+40>0\)\(< =>m>-\frac{40}{8}=-5\)
Vậy để m thỏa mãn đk trên thì \(m>-5\)
mình sửa đề trên là > 0 nhé