K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2021

Để pt có hai nghiệm pb \(\Leftrightarrow\Delta>0\)\(\Leftrightarrow4-4\left(m-1\right)>0\)\(\Leftrightarrow2>m\)

Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-1\end{matrix}\right.\)

Có \(x_1^2+x_2^2-3x_1x_2=2m^2+\left|m-3\right|\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2=2m^2+\left|m-3\right|\)

\(\Leftrightarrow4-5\left(m-1\right)=2m^2+\left|m-3\right|\)

\(\Leftrightarrow2m^2+\left|m-3\right|-9+5m=0\) (1)

TH1: \(m\ge3\)

PT (1) \(\Leftrightarrow2m^2+m-3-9+5m=0\)

\(\Leftrightarrow2m^2+6m-12=0\)

Do \(m\ge3\Rightarrow\left\{{}\begin{matrix}6m-12\ge6>0\\2m^2>0\end{matrix}\right.\) 

\(\Rightarrow2m^2+6m-12>0\) 

=>Pt vô nghiệm

TH2: \(m< 3\)

PT (1)\(\Leftrightarrow2m^2-\left(m-3\right)-9+5m=0\)

\(\Leftrightarrow2m^2+4m-6=0\) \(\Leftrightarrow2m^2-2m+6m-6=0\)

\(\Leftrightarrow2m\left(m-1\right)+6\left(m-1\right)=0\)\(\Leftrightarrow\left(2m+6\right)\left(m-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=1\end{matrix}\right.\) (Thỏa)

Vậy...

11 tháng 2 2022

\(x^2-\left(m+1\right)x+m+4=0\left(1\right)\)

\(\Rightarrow\Delta>0\Leftrightarrow\left(m+1\right)^2-4\left(m+4\right)>0\Leftrightarrow\left[{}\begin{matrix}m< -3\\m>5\end{matrix}\right.\)\(\left(2\right)\)

\(ddkt-thỏa:\sqrt{x1}+\sqrt{x2}=2\sqrt{3}\)

\(x1=0\Rightarrow\left(1\right)\Leftrightarrow m=-4\Rightarrow\left(1\right)\Leftrightarrow x^2+3x=0\Leftrightarrow\left[{}\begin{matrix}x1=0\\x2=-3< 0\left(loại\right)\end{matrix}\right.\)

\(x1\ne0\) \(\Rightarrow0< x1< x2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x1+x2>0\\x1x2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\m+4>0\end{matrix}\right.\)\(\Rightarrow m>-1\)\(\left(3\right)\)

\(\left(2\right)\left(3\right)\Rightarrow m>5\)

\(\Rightarrow\sqrt{x1}+\sqrt{x2}=2\sqrt{3}\)

\(\Leftrightarrow x1+x2+2\sqrt{x1x2}=12\Leftrightarrow m+1+2\sqrt{m+4}=12\)

\(\Leftrightarrow m+4+2\sqrt{m+4}-15=0\)

\(đặt:\sqrt{m+4}=t>5\Rightarrow t^2+2t-15=0\Leftrightarrow\left[{}\begin{matrix}t=-5\left(ktm\right)\\t=3\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow m\in\phi\)

11 tháng 2 2022

Để pt có 2 nghiệm pb 

\(\left(m+1\right)^2-4\left(m+4\right)=m^2+2m+1-4m-16\)

\(=m^2-2m-15>0\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m+4\end{matrix}\right.\)

Ta có : \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=12\Leftrightarrow x_1+2\sqrt{x_1x_2}+x_2=12\)

Thay vào ta được \(m+1+2\sqrt{m+4}=12\Leftrightarrow2\sqrt{m+4}=11-m\)đk : m >= -4 

\(\Leftrightarrow4\left(m+4\right)=121-22m+m^2\Leftrightarrow m^2-26m+105=0\)

\(\Leftrightarrow m=21\left(ktm\right);m=5\left(ktm\right)\)

 

a: Thay m=-5 vào (1), ta được:

\(x^2+2\left(-5+1\right)x-5-4=0\)

\(\Leftrightarrow x^2-8x-9=0\)

=>(x-9)(x+1)=0

=>x=9 hoặc x=-1

b: \(\text{Δ}=\left(2m+2\right)^2-4\left(m-4\right)=4m^2+8m+4-4m+16=4m^2+4m+20>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt 

\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=-3\)

\(\Leftrightarrow x_1^2+x_2^2=-3x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=0\)

\(\Leftrightarrow\left(2m+2\right)^2+m-4=0\)

\(\Leftrightarrow4m^2+9m=0\)

=>m(4m+9)=0

=>m=0 hoặc m=-9/4

a: Thay m=6 vào pt, ta được:

\(x^2-5x+6=0\)

=>x=2 hoặc x=3

b: \(\text{Δ}=\left(-5\right)^2-4m=-4m+25\)

để phương trình có hai nghiệm thì -4m+25>=0

=>-4m>=-25

hay m<=25/4

Theo đề, ta có: 

\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=3\)

\(\Leftrightarrow25-4m=9\)

=>m=4

23 tháng 2 2022

a, Thay m=6 vào pt ta có:

\(x^2-5x+6=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

b, Để pt có 2 nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow\left(-5\right)^2-4.1.m\ge0\\ \Leftrightarrow25-4m\ge0\\ \Leftrightarrow m\le\dfrac{25}{4}\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)

\(\left|x_1-x_2\right|=3\\ \Leftrightarrow\left(x_1-x_2\right)^2=3\\ \Leftrightarrow x^2_1+x^2_2-2x_1x_2=9\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9\\ \Leftrightarrow5^2-4m=9\\ \Leftrightarrow25-4m=9\\ \Leftrightarrow m=4\left(tm\right)\)

6 tháng 1 2023

Ptr có: `a+b+c=1-2m+2+2m-3=0`

   `=>[(x=1),(x=c/a=2m-3):}`

`@TH1: x_1=1;x_2=2m-3`

  `=>\sqrt{1}=2\sqrt{2m-3}`

`<=>\sqrt{2m-3}=1/2`

`<=>2m-3=1/4`

`<=>m=13/8`

`@TH2:x_1=2m-3;x_2=1`

  `=>\sqrt{2m-3}=2\sqrt{1}`

`<=>2m-3=4`

`<=>m=7/2`

NV
11 tháng 1

\(\Delta=25-4\left(3m-1\right)=29-12m\ge0\Rightarrow m\le\dfrac{29}{12}\)

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=3m-1\end{matrix}\right.\)

\(x_1^3+x_2^3+3x_1x_2=-35\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+3x_1x_2=-35\)

\(\Leftrightarrow\left(-5\right)^3+15\left(3m-1\right)+3\left(3m-1\right)=-35\)

\(\Leftrightarrow18\left(3m-1\right)=90\)

\(\Rightarrow m=2\) (thỏa mãn)

\(\text{Δ}=5^2-4\cdot1\cdot\left(3m-1\right)\)

\(=25-4\left(3m-1\right)\)

\(=25-12m+4=-12m+29\)

Để phương trình (1) có hai nghiệm thì Δ>=0

=>-12m+29>=0

=>-12m>=-29

=>\(m< =\dfrac{29}{12}\)

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-5}{1}=-5\\x_1x_2=\dfrac{c}{a}=\dfrac{3m-1}{1}=3m-1\end{matrix}\right.\)

\(x_1^3+x_2^3+3x_1x_2=-35\)

=>\(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+3x_1x_2=-35\)

=>\(\left(-5\right)^3-3\cdot\left(3m-1\right)\cdot\left(-5\right)+3\cdot\left(3m-1\right)=-35\)

=>\(-125+15\left(3m-1\right)+9m-3=-35\)

=>\(-125+45m-15+9m-3=-35\)

=>54m-143=-35

=>54m=108

=>m=2(nhận)

5 tháng 4 2021

a. Với m=6 thì phương trình (1) có dạng 

x^2 - 5x +4= 0

<=> (x-1)(x-4)=0

<=> x=1 hoặc x=4

Vậy m=6 thì phương trình có nghiệm x=1 hoặc x=4

5 tháng 4 2021

b. Xét \(\text{ Δ}=\left(-5\right)^2-4\cdot1\cdot\left(m-2\right)=33-4m\)

Để (1) có nghiệm phân biệt khi \(m< \dfrac{33}{4}\)

Theo Vi-et ta có: \(x_1x_2=m-2;x_1+x_2=5\)

Để 2 nghiệm phương trình (1) dương khi m>2

Ta có:

\(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{3}{2}\Leftrightarrow\dfrac{1}{x_1}+\dfrac{1}{x_2}+\dfrac{2}{\sqrt{x_1x_2}}=\dfrac{9}{4}\\ \Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}+\dfrac{2}{\sqrt{x_1x_2}}=\dfrac{9}{4}\\ \Leftrightarrow\dfrac{5}{m-2}+\dfrac{2}{\sqrt{m-2}}=\dfrac{9}{4}\Leftrightarrow20+8\sqrt{m-2}=9\left(m-2\right)\\ \Leftrightarrow\left(\sqrt{m-2}-2\right)\left(9\sqrt{m-2}+10\right)=0\Leftrightarrow\sqrt{m-2}=2\Leftrightarrow m-2=4\Leftrightarrow m=6\left(t.m\right)\)