K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2021

Ta có: \(\Delta=\left[-\left(m+3\right)\right]^2-4\left(4m-4\right)=m^2+6m+9-16m+16=\left(m-5\right)^2\ge0\)

=> pt luôn có 2 nghiệm x1, x2

=> \(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{m+3-m+5}{2}=4\)

  \(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{m+3+m-5}{2}=m-1\)

Theo bài ra, ta có: \(\sqrt{x_1}+\sqrt{x_2}+x_1x_2=20\)

ĐK: \(x_1\ge0\)\(x_2\ge0\) <=> 4  \(\ge\) 0 và m - 1 \(\ge\)0 <=> m \(\ge\)1

<=> \(\sqrt{4}+\sqrt{m-1}+4\left(m-1\right)=20\)

<=> \(\sqrt{m-1}=22-4m\left(m\le\frac{11}{2}\right)\)

<=> \(m-1=16m^2-176m+484\)

<=> \(16m^2-177m+485=0\)

<=> \(16m^2-80m-97m+485=0\)

<=> \(\left(m-5\right)\left(16m-97\right)=0\)

<=> \(\orbr{\begin{cases}m=5\left(tm\right)\\m=\frac{97}{16}\left(ktm\right)\end{cases}}\)

Vậy ...

Bài 2: 

Ta có: \(\text{Δ}=\left(2m+2\right)^2-4\cdot\left(m^2+4m+3\right)\)

\(=4m^2+8m+4-4m^2-16m-12\)

\(=-8m-8\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

hay m<-1

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=-2m-2\\x_1x_2=m^2+4m+3\end{matrix}\right.\)

Ta có: \(2x_1+2x_2-x_1x_2+7=0\)

\(\Leftrightarrow2\left(x_1+x_2\right)-x_1x_2+7=0\)

\(\Leftrightarrow2\cdot\left(-2m-2\right)-m^2-4m-3+7=0\)

\(\Leftrightarrow-4m-4-m^2-4m+4=0\)

\(\Leftrightarrow m\left(m+8\right)=0\)

\(\Leftrightarrow m=-8\)

 

16 tháng 7 2021

Ta có: \(\Delta'=m^2+2m+1-m^2-4m-3=-2m-2\)

Để PT có 2 nghiệm thì \(-2m-2\ge0\Leftrightarrow m\le-1\)

Theo viet \(\left\{{}\begin{matrix}x_1+x_2=-2m-2\\x_2x_2=m^2+4m+3\end{matrix}\right.\)

theo bài

\(2x_1+2x_2-x_1x_2+7=0\)

\(\Leftrightarrow2\left(x_1+x_2\right)-x_1x_2+7=0\)

Thay số:

\(2\left(-2m-2\right)-m^2-4m-3+7=0\)

\(\Leftrightarrow-m^2-8m=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-8\\m=0\left(loai\right)\end{matrix}\right.\)

Vậy ...

Chúc bạn học tốt

11 tháng 2 2022

\(x^2-\left(m+1\right)x+m+4=0\left(1\right)\)

\(\Rightarrow\Delta>0\Leftrightarrow\left(m+1\right)^2-4\left(m+4\right)>0\Leftrightarrow\left[{}\begin{matrix}m< -3\\m>5\end{matrix}\right.\)\(\left(2\right)\)

\(ddkt-thỏa:\sqrt{x1}+\sqrt{x2}=2\sqrt{3}\)

\(x1=0\Rightarrow\left(1\right)\Leftrightarrow m=-4\Rightarrow\left(1\right)\Leftrightarrow x^2+3x=0\Leftrightarrow\left[{}\begin{matrix}x1=0\\x2=-3< 0\left(loại\right)\end{matrix}\right.\)

\(x1\ne0\) \(\Rightarrow0< x1< x2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x1+x2>0\\x1x2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\m+4>0\end{matrix}\right.\)\(\Rightarrow m>-1\)\(\left(3\right)\)

\(\left(2\right)\left(3\right)\Rightarrow m>5\)

\(\Rightarrow\sqrt{x1}+\sqrt{x2}=2\sqrt{3}\)

\(\Leftrightarrow x1+x2+2\sqrt{x1x2}=12\Leftrightarrow m+1+2\sqrt{m+4}=12\)

\(\Leftrightarrow m+4+2\sqrt{m+4}-15=0\)

\(đặt:\sqrt{m+4}=t>5\Rightarrow t^2+2t-15=0\Leftrightarrow\left[{}\begin{matrix}t=-5\left(ktm\right)\\t=3\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow m\in\phi\)

11 tháng 2 2022

Để pt có 2 nghiệm pb 

\(\left(m+1\right)^2-4\left(m+4\right)=m^2+2m+1-4m-16\)

\(=m^2-2m-15>0\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m+4\end{matrix}\right.\)

Ta có : \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=12\Leftrightarrow x_1+2\sqrt{x_1x_2}+x_2=12\)

Thay vào ta được \(m+1+2\sqrt{m+4}=12\Leftrightarrow2\sqrt{m+4}=11-m\)đk : m >= -4 

\(\Leftrightarrow4\left(m+4\right)=121-22m+m^2\Leftrightarrow m^2-26m+105=0\)

\(\Leftrightarrow m=21\left(ktm\right);m=5\left(ktm\right)\)

 

6 tháng 1 2023

Ptr có: `a+b+c=1-2m+2+2m-3=0`

   `=>[(x=1),(x=c/a=2m-3):}`

`@TH1: x_1=1;x_2=2m-3`

  `=>\sqrt{1}=2\sqrt{2m-3}`

`<=>\sqrt{2m-3}=1/2`

`<=>2m-3=1/4`

`<=>m=13/8`

`@TH2:x_1=2m-3;x_2=1`

  `=>\sqrt{2m-3}=2\sqrt{1}`

`<=>2m-3=4`

`<=>m=7/2`

27 tháng 6 2019

b) Gọi  x 1 ; x 2  lần lượt là 2 nghiệm của phương trình đã cho

Theo hệ thức Vi-et ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

x 1 2 + x 2 2  - x 1 x 2  = x 1 + x 2 2 - 3x1 x2 = 4 m 2  + 3(4m + 4)

Theo bài ra:  x 1 2 + x 2 2  -  x 1   x 2 =13

⇒ 4m2 + 3(4m + 4) = 13 ⇔ 4m2 + 12m - 1 = 0

∆ m  = 122 -4.4.(-1) = 160 ⇒ ∆ m = 4 10

Phương trình có 2 nghiệm phân biệt

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy với Đề kiểm tra Toán 9 | Đề thi Toán 9 thì phương trình có 2 nghiệm  x 1 ;  x 2  thỏa mãn điều kiện  x 1 2 + x 2 2  -  x 1   x 2  = 13

23 tháng 2 2022

a, Thay m=0 vào pt ta có:

\(x^2-x+1=0\)

\(\Rightarrow\) pt vô nghiệm 

b, Để pt có 2 nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow\left(-1\right)^2-4.1\left(m+1\right)\ge0\\ \Leftrightarrow1-4m-4\ge0\\ \Leftrightarrow-3-4m\ge0\\ \Leftrightarrow4m+3\le0\\ \Leftrightarrow m\le-\dfrac{3}{4}\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1x_2\left(x_1x_2-2\right)=3\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1x_2\right)^2-2x_1x_2=3.1\\ \Leftrightarrow\left(m+1\right)^2-2\left(m+1\right)-3=0\\ \Leftrightarrow\left[{}\begin{matrix}m+1=3\\m+1=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

b: \(\text{Δ}=\left(2m+3\right)^2-4\left(4m+2\right)\)

\(=4m^2+12m+9-16m-8\)

\(=4m^2-4m+1=\left(2m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

Theo đề, ta có:

\(\left\{{}\begin{matrix}2x_1-5x_2=6\\x_1+x_2=2m+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1-5x_2=6\\2x_1+2x_2=4m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7x_2=-4m\\2x_1=5x_2+6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{4}{7}m\\2x_1=\dfrac{20}{7}m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{4}{7}m\\x_1=\dfrac{10}{7}m+3\end{matrix}\right.\)

Theo đề, ta có: \(x_1x_2=4m+2\)

\(\Rightarrow4m+2=\dfrac{40}{49}m^2+\dfrac{12}{7}m\)

\(\Leftrightarrow m^2\cdot\dfrac{40}{49}-\dfrac{16}{7}m-2=0\)

\(\Leftrightarrow40m^2-112m-98=0\)

\(\Leftrightarrow40m^2-140m+28m-98=0\)

=>\(20m\left(2m-7\right)+14\left(2m-7\right)=0\)

=>(2m-7)(20m+14)=0

=>m=7/2 hoặc m=-7/10