Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ thay m=-3 vào pt ta dc : x2 - 2 * (-1) *x -12 +3 = 0 => x2 +2x - 9 = 0
\(\Delta\)= 1 + 9 = 10 => x1 = -1 + căng 10
x2 = -1 - căng 10
b/ có : \(\Delta\)' = [ - (m+2) ] 2 - (4m + 3) = m2 + 4m + 4 - 4m - 3 = m2 + 1 > 0 vs mọi m => có 2 nghiệm pb
có : A = x12 + x22 - 10( x1 + x2) = (x1+x2)2 - 2x1x2 - 10( x1 + x2 ) = ( 2m + 4 )2 - 2 ( 4m + 3 ) - 10 ( 2m + 4 ) = 4m2 + 16m + 16 - 8m - 6 - 20m -40 = 4m2 -12m -30
rồi bn bấm máy tính ra kết quả nha ^^
a) Thay m=-3 vào phương trình ta được :
x2-2((-3)+2))x+4*(-3)+3=0
x2+2x-9=0
ta có đen ta phẩy =1+9=10
vì đen ta > 0 nên phương trình có 2 nghiệm phân biệt :
x1=-1-(căn 10)
x2=-1+(căn 10)
Vậy pt có nghiệm là {-1-(căn 10) ; -1+(căn 10)}
bn ơi mk chỉ lm đc phần a thôi phần b bn thử tính đen ta > 0 theo m ở pt ban đầu xem
b)
Bạn ấy chỉ đưa ra câu hỏi vậy thôi, mình biết là bạn ấy chưa học cái này đâu
\(\Delta=\left(2m-3\right)^2-4.\left(m^2-3m\right)=4m^2-12m+9-4m^2+12m=9>0\)với mọi m
=> PT luôn có 2 nghiệm phân biệt với mọi m
Áp dụng Delta '
\(a=1\)
\(b=-2\left(m+2\right)\Rightarrow b'=\frac{-2\left(m+2\right)}{2}=-m-2\)
\(c=6m+3\)
\(\Rightarrow\Delta'=\left(-m-2\right)^2-1.\left(6m+3\right)\)
\(=m^2+4m+4-6m-3\)
\(=m^2-2m+1=\left(m-1\right)^2\ge0\)
Vậy phương trình luôn có nghiệm với mọi m.
phương trình bằng 111111111 + 111111111 = 222222222
\(a)\) Khi m=2 pt \(\Leftrightarrow\)\(x^2-\left(2.2-1\right)x+2\left(2-1\right)=0\)
\(\Leftrightarrow\)\(x^2-3x+2=0\)\(\Leftrightarrow\)\(\left(x-1\right)\left(x-2\right)=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy pt có hai nghiệm phân biệt \(\hept{\begin{cases}x_1=1\\x_2=2\end{cases}}\) khi m=2
\(b)\) Ta có : \(\Delta=\left(1-2m\right)^2-4m\left(m-1\right)=4m^2-4m+1-4m^2+4m=1>0\)
Vậy pt luôn có hai nghiệm phân biệt với mọi m
a) tự làm nha
b xét tích ac ta có: \(-m^2+m-1=-\left(m^2-m+\frac{1}{4}+\frac{3}{4}\right)=-\left[\left(m-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
ta có: \(\left(m-\frac{1}{2}\right)^2\ge0\Leftrightarrow\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\Rightarrow-\left[\left(m-\frac{1}{2}\right)^2+\frac{3}{4}\right]<0\)với mọi m
=> tích ac <0 <=> pt luôn có 2 nghiệm pb trái dấu với mọi m
\(\Delta'=\left(m+1\right)^2-4m=\left(m-1\right)^2\ge0;\forall m\)
\(\Rightarrow\) Phương trình có nghiệm với mọi m