Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Delta '
\(a=1\)
\(b=-2\left(m+2\right)\Rightarrow b'=\frac{-2\left(m+2\right)}{2}=-m-2\)
\(c=6m+3\)
\(\Rightarrow\Delta'=\left(-m-2\right)^2-1.\left(6m+3\right)\)
\(=m^2+4m+4-6m-3\)
\(=m^2-2m+1=\left(m-1\right)^2\ge0\)
Vậy phương trình luôn có nghiệm với mọi m.
phương trình bằng 111111111 + 111111111 = 222222222
a, Thay m = -1/2 vào pt trên ta đc
\(-\frac{1}{2}\left(x^2-4x+3\right)+2\left(x-1\right)\)
\(=-\frac{\left(x-3\right)\left(x-1\right)}{2}+2x-2\)
a) Với m=\(\frac{-1}{2}\)ta có:
\(\frac{-1}{2}\left(x^2-4x+3\right)+2\left(x-1\right)=0\)
<=> \(x^2-8x+7=0\)
Vì a+b+c=1+(-8)+7=0
Nên pt có nghiệm \(x_1=1;x_2=7\)
b) +) nếu m=0, pt có dạng 2(x-1)=0 <=> x=1
+) nếu m\(\ne\)0, pt có dạng mx2+2(1-2m)x+3m-2=0
\(\Delta'=\left(1-2m\right)^2-k\left(3m-2\right)=1-4m-3m^2+2m\)
\(=m^2-2m+1=\left(m-1\right)^2\ge0\forall m\)
Vậy pt có nghiệm với mọi m
Bạn ấy chỉ đưa ra câu hỏi vậy thôi, mình biết là bạn ấy chưa học cái này đâu
\(\Delta=\left(2m-3\right)^2-4.\left(m^2-3m\right)=4m^2-12m+9-4m^2+12m=9>0\)với mọi m
=> PT luôn có 2 nghiệm phân biệt với mọi m
\(a)\) Khi m=2 pt \(\Leftrightarrow\)\(x^2-\left(2.2-1\right)x+2\left(2-1\right)=0\)
\(\Leftrightarrow\)\(x^2-3x+2=0\)\(\Leftrightarrow\)\(\left(x-1\right)\left(x-2\right)=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy pt có hai nghiệm phân biệt \(\hept{\begin{cases}x_1=1\\x_2=2\end{cases}}\) khi m=2
\(b)\) Ta có : \(\Delta=\left(1-2m\right)^2-4m\left(m-1\right)=4m^2-4m+1-4m^2+4m=1>0\)
Vậy pt luôn có hai nghiệm phân biệt với mọi m
Xin lựa a;b ... c;d e rỗng tuếch :>> (ko bt đúng ko nữa).
a, Thay m = 5 vào biểu thức ta đc
\(x^2-2\left(5+6\right)x+5-4=0\)
\(x^2-33x+1=0\)
\(\Delta=\left(-33\right)^2-4.1.1=1089-4=1085>0\)
Nên phương trình có 2 nghiệm phân biệt
\(x_1=\frac{33-\sqrt{1085}}{2};x_2=\frac{33+\sqrt{1085}}{2}\)
b, Ta có :
\(\Delta=\left(2m-2\right)^2-4\left(m-4\right)=4m^2-4-4m+16=4m^2-4m+12\)
\(=\left(4m^2-4m+1\right)+11\ge11\forall m\)
Vậy phuwong trình có 2 nghiệm phân biệt vs mọi x
1, Khi \(m=0\), PT(1) trở thành: \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy \(S=\left\{0;1\right\}\)
2, PT đã cho có \(a=1>0\)nên đây là 1 PT bậc 2
Lập \(\Delta=b^2-4ac=\left(2m+1\right)^2-4\left(m^2+m\right)=4m^2+4m+1-4m^2-4m=1>0\)
Do đó PT (1) luôn có 2 nghiệm phân biệt
3, \(x_1< x_2\)là nghiệm của PT (1) \(\Rightarrow x_1=\frac{-b-\sqrt{\Delta}}{2a}< \frac{-b+\sqrt{\Delta}}{2a}=x_2\)
Ta có: \(x_2-x_1=\frac{2\sqrt{\Delta}}{2a}=1\Leftrightarrow x_2=x_1+1\forall m\)
Do đó khi m thay đổi thì \(A\left(x_1;x_2\right)\)nằm trên đường thẳng \(y=x+1\)cố định.