Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để PT có 2 nghiệm $x_1,x_2$ thì:
\(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m-4)^2-m(m+7)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ m<\frac{16}{15}\end{matrix}\right.\)
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=\frac{2(4-m)}{m}\\ x_1x_2=\frac{m+7}{m}\end{matrix}\right.\)
Khi đó:
\(x_1-2x_2=0\Leftrightarrow x_1=2x_2\Leftrightarrow \left\{\begin{matrix} 3x_2=x_1+x_2\\ 2x_2^2=x_1x_2\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 3x_2=\frac{2(4-m)}{m}\\ 2x_2^2=\frac{m+7}{m}\end{matrix}\right.\Rightarrow \left[\frac{2(4-m)}{3m}\right]^2=\frac{m+7}{2m}\)
\(\Leftrightarrow 8(4-m)^2=9m(m+7)\)
\(\Leftrightarrow -m^2-127m+128=0\Rightarrow m=1\) hoặc $m=-128$ (đều thỏa mãn khi so với ĐK $m$ ở trên)
a) thay \(n=0\) vào phương trình (i)
ta có : (i) \(\Leftrightarrow x^2+mx-3=0\)
ta có : \(\Delta=\left(m\right)^2-4.1.\left(-3\right)=m^2+12\ge12>0\forall m\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt với mọi m (đpcm)
1) Dùng vi-et rồi phân tích A là ok
2) a) dùng viet , rồi làm sao để khử đc m thông qua S và P là đc
b) pt có 2 nghiệm dương pb : \(\left\{{}\begin{matrix}\Delta>0\\s>0\\p>0\end{matrix}\right.\)
c) 2 nghiem trái dấu : \(\left\{{}\begin{matrix}\Delta\ge0\\p>0\end{matrix}\right.\)
d) cùng âm : \(\left\{{}\begin{matrix}\Delta\ge0\\s< 0\\p>0\end{matrix}\right.\)
e) (x1+x2)2-2x1.x2=x1+x2 ( thay viet vô)
Ta có: \(\frac{1}{m}+\frac{1}{n}=\frac{1}{2}\)
\(\Rightarrow\frac{m+n}{mn}=\frac{1}{2}\)
\(\Leftrightarrow mn=2\left(m+n\right)\)
\(\Rightarrow2mn=4\left(m+n\right)\)
Từ Phương trình 1 lập \(\Delta_1\)
\(\Delta_1=m^2-4n\)
Phương trình 2 có \(\Delta_2=n^2-4m\)
lấy \(\Delta_1+\Delta_2\)
\(=m^2+n^2-4m-4n\)
\(=m^2-4\left(m+n\right)+n^2\)
\(=m^2-2mn+n^2\)
\(=\left(m-n\right)^2\ge0\)
vậy tồn tại delta1 hoặc delta 2 dương nên một trong 2 phương trình đã cho có ít nhất 1 phương trình có nghiệm
Không ai làm
vì đề bài quá dài.
Bạn nên chí nhỏ ra nhé
sẽ có nhiều người giúp...
∆ = m 2 – 4 (n – 3) = m 2 – 4n + 12
Phương trình đã cho có hai nghiệm x 1 ; x 2 ⇔ ∆ ≥ 0 ⇔ m 2 – 4 n + 12 ≥ 0
Áp dụng định lý Vi-ét ta có x 1 + x 2 = − m ; x 1 . x 2 = n – 3
Ta có:
x 1 − x 2 = 1 x 1 2 − x 2 2 = 7 ⇔ x 1 − x 2 2 = 1 x 1 − x 2 x 1 + x 2 = 7 ⇔ x 1 + x 2 2 − 4 x 1 . x 2 = 1 x 1 + x 2 = 7 ⇔ 49 − 4 x 1 . x 2 = 1 x 1 + x 2 = 7 ⇔ x 1 . x 2 = 12 x 1 + x 2 = 7 ⇔ n − 3 = 12 − m = 7 ⇔ m = − 7 n = 15
Thử lại ta có: ∆ = ( − 7 ) 2 – 4.15 + 12 = 1 > 0 (tm)
Vậy m = −7; n = 15
Đáp án: C