K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2017

∆ = m 2 – 4 (n – 3) = m 2 – 4n + 12

Phương trình đã cho có hai nghiệm x 1 ;   x 2 ⇔ ∆ ≥ 0 ⇔ m 2 – 4 n + 12   ≥ 0

Áp dụng định lý Vi-ét ta có x 1 + x 2 = −   m ;   x 1 . x 2 = n – 3

Ta có:

x 1 − x 2 = 1 x 1 2 − x 2 2 = 7 ⇔ x 1 − x 2 2 = 1 x 1 − x 2 x 1 + x 2 = 7 ⇔ x 1 + x 2 2 − 4 x 1 . x 2 = 1 x 1 + x 2 = 7     ⇔ 49 − 4 x 1 . x 2 = 1 x 1 + x 2 = 7 ⇔ x 1 . x 2 = 12 x 1 + x 2 = 7 ⇔ n − 3 = 12 − m = 7 ⇔ m = − 7 n = 15   

Thử lại ta có: ∆ = ( − 7 ) 2 – 4.15 + 12 = 1 > 0 (tm)

Vậy m = −7; n = 15

Đáp án: C

AH
Akai Haruma
Giáo viên
4 tháng 4 2020

Lời giải:
Để PT có 2 nghiệm $x_1,x_2$ thì:

\(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m-4)^2-m(m+7)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ m<\frac{16}{15}\end{matrix}\right.\)

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=\frac{2(4-m)}{m}\\ x_1x_2=\frac{m+7}{m}\end{matrix}\right.\)

Khi đó:

\(x_1-2x_2=0\Leftrightarrow x_1=2x_2\Leftrightarrow \left\{\begin{matrix} 3x_2=x_1+x_2\\ 2x_2^2=x_1x_2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 3x_2=\frac{2(4-m)}{m}\\ 2x_2^2=\frac{m+7}{m}\end{matrix}\right.\Rightarrow \left[\frac{2(4-m)}{3m}\right]^2=\frac{m+7}{2m}\)

\(\Leftrightarrow 8(4-m)^2=9m(m+7)\)

\(\Leftrightarrow -m^2-127m+128=0\Rightarrow m=1\) hoặc $m=-128$ (đều thỏa mãn khi so với ĐK $m$ ở trên)

18 tháng 7 2017

a) thay \(n=0\) vào phương trình (i)

ta có : (i) \(\Leftrightarrow x^2+mx-3=0\)

ta có : \(\Delta=\left(m\right)^2-4.1.\left(-3\right)=m^2+12\ge12>0\forall m\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt với mọi m (đpcm)

8 tháng 8 2018

1) Dùng vi-et rồi phân tích A là ok

2) a) dùng viet , rồi làm sao để khử đc m thông qua S và P là đc

b) pt có 2 nghiệm dương pb : \(\left\{{}\begin{matrix}\Delta>0\\s>0\\p>0\end{matrix}\right.\)

c) 2 nghiem trái dấu : \(\left\{{}\begin{matrix}\Delta\ge0\\p>0\end{matrix}\right.\)

d) cùng âm : \(\left\{{}\begin{matrix}\Delta\ge0\\s< 0\\p>0\end{matrix}\right.\)

e) (x1+x2)2-2x1.x2=x1+x2 ( thay viet vô)

9 tháng 5 2018

Ta có:        \(\frac{1}{m}+\frac{1}{n}=\frac{1}{2}\)

\(\Rightarrow\frac{m+n}{mn}=\frac{1}{2}\)

\(\Leftrightarrow mn=2\left(m+n\right)\)

\(\Rightarrow2mn=4\left(m+n\right)\)

Từ Phương trình 1 lập \(\Delta_1\)

\(\Delta_1=m^2-4n\)

Phương trình 2 có \(\Delta_2=n^2-4m\)

lấy \(\Delta_1+\Delta_2\)

\(=m^2+n^2-4m-4n\)

\(=m^2-4\left(m+n\right)+n^2\)

\(=m^2-2mn+n^2\)

\(=\left(m-n\right)^2\ge0\)

vậy tồn tại delta1 hoặc delta 2 dương nên một trong 2 phương trình đã cho có ít nhất 1 phương trình có nghiệm

bài 1: Trong b​uổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữbài 2: 1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đób) tìm a để hệ phương...
Đọc tiếp

bài 1: Trong b​uổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữ

bài 2: 

1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)

a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó

b) tìm a để hệ phương trình vô nghiệm

2. cho hệ phương trình \(\hept{\begin{cases}ax-2y=a\\-2x+y=a+1\end{cases}}\)

a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a

b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1

c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên

bài 3:

1.Chứng minh với mọi giá trị của m thì hệ phương trình \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)(m là tham số) luôn có nghiệm duy nhất (x;y) thỏa mãn: \(2x+y\le3\)

2. Xác định giá trị của m để hệ phương trình \(\hept{\begin{cases}mx+5y=3\\x-3y=5\end{cases}}\)vô nghiệm

 

 

0
30 tháng 11 2015

Không ai làm

vì đề bài quá dài.

Bạn nên chí nhỏ ra nhé

sẽ có nhiều người giúp...