\(\sqrt{x}-\sqrt{x-1}=m\)

Tìm điều kiện của m để phương trình có...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2016

Kiểu như vầy nè

Đặt \(\hept{\begin{cases}\sqrt{x}=a\left(a\ge1\right)\\\sqrt{x-1}=b\left(b\ge0\right)\end{cases}\Rightarrow a^2-b^2=1\left(1\right)}\)

\(\Rightarrow a-b=m\Leftrightarrow a=m+b\)

Thế vô (1) ta được

\(\left(m+b\right)^2-b^2=1\)

\(\Leftrightarrow2bm-1+m^2=0\)

\(\Leftrightarrow b=\frac{1-m^2}{2m}\)

\(\Rightarrow a=\frac{m^2+1}{2m}\)

Kết hợp với điều kiện thì ta được

\(\hept{\begin{cases}\frac{m^2+1}{2m}\ge1\\\frac{1-m^2}{2m}\ge0\end{cases}}\)

Ý mình là vầy nè

24 tháng 11 2016

Thử đặt ẩn phụ rồi đưa về pt bậc 2 thử bảo ngọc. Biết đâu đạt được bí kiếp :)

5 tháng 4 2021

Ta có:

\(x^2-2\left(m+5\right)x+2m+9=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2m-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2m+9\end{cases}}\)

Thế vô làm nốt

5 tháng 8 2016

a. Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow2^2-\left(m+1\right)\ge0\Leftrightarrow m\le3\)

b. Theo Viet \(\hept{\begin{cases}x_1+x_2=-4\\x_1x_2=m+1\end{cases}}\)

Lại có \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=16-2\left(m+1\right)=14-2m\)

Theo đề bài: 14 - 2m = 10 => m = 2. (TM)

5 tháng 8 2016

a) PT có nghiệm thì \(\Delta=4^2-4\left(m+1\right)\ge0\Leftrightarrow12-4m\ge0\Leftrightarrow4m\le12\Leftrightarrow m\le4\)

b) theo hệ thức viet ta có \(\hept{\begin{cases}x_1+x_2=-4\\x_1.x_2=m+1\end{cases}}\)

Có   \(x_1^2+x^2_2=10\Leftrightarrow x_1^2+x^2_2+2x_1.x_2=10+2x_1.x_2\Leftrightarrow\left(x_1+x_2\right)^2=10+m+1\)

\(\left(-4\right)^2=11+m\Leftrightarrow16=11+m\Leftrightarrow m=5\)

6 tháng 8 2016

a) Điều kiện : \(x\ge-\frac{3}{4}\)

Xét : \(\sqrt{x+1+\sqrt{x+\frac{3}{4}}}=\sqrt{\left(x+\frac{3}{4}\right)+2.\sqrt{x+\frac{3}{4}}.\frac{1}{2}+\frac{1}{4}}=\sqrt{\left(\sqrt{x+\frac{3}{4}}+\frac{1}{2}\right)^2}=\sqrt{x+\frac{3}{4}}+\frac{1}{2}\)

\(\Rightarrow x+\sqrt{x+\frac{3}{4}}+\frac{1}{2}=a\Leftrightarrow\left(x+\frac{3}{4}\right)+\sqrt{x+\frac{3}{4}}-\left(\frac{1}{4}+a\right)=0\)

Đặt \(y=\sqrt{x+\frac{3}{4}},y\ge0\). pt trên trở thành \(y^2+y-\left(a+\frac{1}{4}\right)=0\)

 Để pt có nghiệm theo y thì \(\Delta=1^2+4.\left(a+\frac{1}{4}\right)=2\left(2a+1\right)\ge0\Leftrightarrow a\ge-\frac{1}{2}\)

Khi đó : \(x_1=\frac{-1-\sqrt{2\left(2a+1\right)}}{2}\)\(x_2=\frac{-1+\sqrt{2\left(2a+1\right)}}{2}\)