Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho phân thức \(A=\frac{x^5+2x^4+2x^3-4x^2+3x+6}{x^2+2x-8}\)
a) Tìm tập xác định của A
b) Tìm các giá trị của x để A = 0
c) Rút gọn A
a)Ta có :
(a+b+c)2 - (ab+bc+ca) =0 <=> a2+b2+c2+ab+bc+ca =0
<=>2a2+2b2+2c2+2ab+2bc+2ca=0
<=>(a+b)2+(b+c)2+(c+a)2=0
<=>a+b =b+c =c+a =0
<=>a=b=c=0
Vậy điều kiện để phân thức M được xác định là a;b;c không đồng thời bằng 0.
b)Ta có hằng thức: (a+b+c)2=a2+b2+c2+2(ab+bc+ca)
Ta đặt a2+b2+c2=x ; ab+bc+ca=y.Khi đó (a+b+c)2= x+2y
Ta có:
\(M=\frac{x\left(x+2y\right)+y^2}{x+2y-y}=\frac{x^2+2xy+y^2}{x+y}=\frac{\left(x+y\right)^2}{x+y}=x+y\)
= a2+b2+c2+ab+bc+ca.
a: \(=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)-3abc}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\dfrac{\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-bc-ac}\)
=a+b+c
b:
Sửa đề: \(=\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y\right)^3+z^3+3xy\left(x-y\right)+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y+z\right)\left(x^2-2xy+y^2-xz+yz+z^2\right)+3xy\left(x-y+z\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)
\(=\dfrac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy-xz+yz\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)
\(=\dfrac{x-y+z}{2}\)
a) \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}\)
\(=a+b+c\)
Ta có: \(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(c+a\right)\)
Tương tự: \(\left\{{}\begin{matrix}b^2+1=\left(a+b\right)\left(b+c\right)\\c^2+1=\left(c+a\right)\left(b+c\right)\end{matrix}\right.\)
=> \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
Mặt khác: \(a+b+c-abc=a\left(1-bc\right)+b+c\)
\(=a\left(ab+ca\right)+b+c\) (Vì ab+bc+ca=1)
\(=\left(a^2+1\right)\left(b+c\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (Vì \(a^2+1=\left(a+b\right)\left(c+a\right)\))
\(T=1\)
\(B=\left(ab+bc+ca\right)\left(\dfrac{ab+bc+ca}{abc}\right)-abc\left(\dfrac{a^2b^2+b^2c^2+c^2a^2}{a^2b^2c^2}\right)\)
\(=\dfrac{\left(ab+bc+ca\right)^2-\left(a^2b^2+b^2c^2+c^2a^2\right)}{abc}\)
\(=\dfrac{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)-\left(a^2b^2+b^2c^2+c^2a^2\right)}{abc}\)
\(=2\left(a+b+c\right)\)
1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)
\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)
2/
Ta có
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)
\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)
\(\Rightarrow P_{min}=18\)
Phân thức có nghĩa khi a;b;c không đồng thời bằng 0
Khi đó:
\(\dfrac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+\left(ab+bc+ca\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)
\(=\dfrac{\left(a^2+b^2+c^2\right)^2+2\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)+\left(ab+bc+ca\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)
\(=\dfrac{\left(a^2+b^2+c^2+ab+bc+ca\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)
\(=a^2+b^2+c^2+ab+bc+ca\)