Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(6n+5;3n+2) là d
Ta có:\(6n+5⋮d\)
\(3n+2⋮d\Rightarrow2\left(3n+2\right)⋮d\Rightarrow6n+4⋮d\Rightarrow6n+5-6n+4⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\RightarrowƯCLN\left(6n+5;3n+2\right)=1\left(n\in N\right)\)
\(\Rightarrow P\)là phân số tối giản
Ta có:\(p=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=\frac{2.\left(3n+2\right)+1}{3n+2}=2+\frac{1}{3n+2}\)
Để P có giá trị lớn nhất
\(\Rightarrow\frac{1}{3n+2}\)có giá trị lớn nhất
\(\frac{1}{3n+2}\ge1\)
Dấu\("="\)xảy ra khi
\(\frac{1}{3n+2}=1\Rightarrow3n+2=1\Rightarrow3n=-1\Rightarrow n=\frac{-1}{3}\)
\(\Rightarrow\)Giá trị lớn nhất của \(P=2+1=3\)khi\(n=\frac{-1}{3}\)
\(a,\)Gọi d là ƯCLN\((6n+5,3n+2)\)\((ĐK:d\inℕ^∗)\)
Ta có : \(d\inƯC(6n+5,3n+2)\)nên :
\((6n+3)⋮d\) và \((3n+2)⋮d\)
\(\Rightarrow\left[2(3n+2)-(6n+3)\right]⋮d\)
\(\Rightarrow\left[(6n+4)-(6n+3)\right]⋮d\)
\(\Rightarrow1⋮d\)
Mà \(d\inℕ^∗\)nên d = 1 . Vậy phân số \(P=\frac{6n+5}{3n+2}\)là phân số tối giản
b, Tự làm
\(a,\)Giả sử phân số P chưa tối giản
\(\Rightarrow6n+5⋮d;3n+2⋮d\)
Từ \(3n+2⋮d\Rightarrow2\left(3n+2\right)⋮d\)
\(\Rightarrow6n+4⋮d\)
\(\Rightarrow\left(6n+5\right)-\left(6n+4\right)⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
Vậy p/số trên tối giản
\(b,P=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=2+\frac{1}{3n+2}\)
Để \(P\)đạt Max thì \(\frac{1}{3n+2}\)phải đạt Max
\(\Rightarrow3n+2=1\Leftrightarrow n=-\frac{1}{3}\)
Vậy Max P = 1+1=2<=> n = -1/3
a) \(P=\frac{6n+5}{3n+2}\)là phân số tối giản <=> ƯCLN(6n + 5; 3n + 2) \(\in\){-1;1}
Gọi d là ƯCLN(6n+5;3n + 2)
Ta có : 6n + 5 \(⋮\)d
3n + 2 \(⋮\)d => 2(3n + 2) \(⋮\)d => 6n + 4 \(⋮\)d
=> (6n + 5) - (6n + 4) = 1 \(⋮\)d => d\(\in\){1; -1}
Vậy P là phần số tối giản
b) tự làm
Chứng tỏ rằng : phân số 5n+3/3n+2 là phân số tối giản với n thuộc N?
Để phân số 5n+3/3n+2 tối giản với mọi n thuộc N thì ƯCLN của chúng phải bằng 1 và -1.Ta có:
Gọi d là ước chung của (5n + 3) ;( 3n + 2) (d thuộc Z)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d thuộc ( 1; -1)
=> ƯCLN(5n + 3 ; 3n + 2) = 1;-1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N
Câu 3 :
Ta có : 14 = 2 . 7 => 2 . 7 chia hết cho 2
=> 2x + 3y chia hết cho 2
=> 2x chia hết cho 2
=> 3y chia hết cho 2
Vì ƯC(2;3) = 1
=> 3y chia hết cho 2 => y chia hết cho 2
=> 3y ≤ 14
=> y ≤ 14/3
=> y ≤ 4
=> y = 2 ; y = 4
Với y = 2 => 2x + 3 - 2 = 14=> x = 4
y = 4 => 2x + 3 . 4 = 14 => x = 1
Vậy với x = 2 thì y = 4
x = 4 thì y = 2
Câu 3 :
Ta có : 14 = 2 . 7 => 2 . 7 chia hết cho 2
=> 2x + 3y chia hết cho 2
=> 2x chia hết cho 2
=> 3y chia hết cho 2
Vì ƯC(2;3) = 1
=> 3y chia hết cho 2 => y chia hết cho 2
=> 3y ≤ 14
=> y ≤ 14/3
=> y ≤ 4
=> y = 2 ; y = 4
Với y = 2 => 2x + 3 - 2 = 14=> x = 4
y = 4 => 2x + 3 . 4 = 14 => x = 1
Vậy với x = 2 thì y = 4
x = 4 thì y = 2
a) \(P=\frac{3n+5}{6n}=\frac{n+2}{6n}+\frac{2n+3}{6n}\)
b) \(P=\frac{3n}{6n}+\frac{5}{6n}=\frac{3}{6}+\frac{5}{6n}\)=> để P lớn nhất 6n phải bé nhất => n = 1
\(GTLN.P=\frac{3}{6}+\frac{5}{6}=\frac{8}{6}=\frac{4}{3}\)
Để A là phân số thì 3n + 7 ko chia hết cho n + 1
<=> n + 1 khác Ư(4) = {-1;-2;-4;1;2;4}
=> n khác {-2;-3;-5;0;1;3}
Để A là số nguyên thì 3n + 7 chia hết cho n + 1
=> 3n + 3 + 4 chia hết cho n + 1
=> 3.(n + 1) + 4 chia hết cho n + 1
=> 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4) = {-4;-2;-1;1;2;4}
=> n = {-5;-3;-2;0;1;3}
a; P = \(\dfrac{6n+5}{3n+2}\) (n \(\in\) N)
Gọi ước chung lớn nhất của 6n + 5 và 3n + 2 là d
Ta có: \(\left\{{}\begin{matrix}6n+5\\3n+2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}6n+5⋮d\\2.\left(3n+2\right)⋮d\end{matrix}\right.\)
6n + 5 - 2.(3n + 2) ⋮ d
6n + 5 - 6n - 4 ⋮ d
(6n - 6n) + 1 ⋮ d
1 ⋮ d
d = 1
Hay P = \(\dfrac{6n+5}{3n+2}\) là phân số tối giản
b; P = \(\dfrac{6n+5}{3n+2}\) ( n \(\in\) N)
P = \(\dfrac{6n+4+1}{3n+2}\)
P = \(\dfrac{2.\left(3n+2\right)}{\left(3n+2\right)}\) + \(\dfrac{1}{3n+2}\)
P = 2 + \(\dfrac{1}{3n+2}\)
Pmax ⇔ \(\dfrac{1}{3n+2}\) đạt giá trị lớn nhất
vì n \(\in\) N; \(\dfrac{1}{3n+2}\) đạt giá trị lớn nhất khi và chỉ khi
3n + 2 = 1 ⇒ n = - \(\dfrac{1}{3}\) (loại)
Vậy không có giá trị nào của n là số tự nhiên để P đạt giá trị lớn nhất.