Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{n+3}\);\(\dfrac{2}{n+4}\);...;\(\dfrac{2001}{n+2003}\);\(\dfrac{2002}{n+2004}\)
=\(\dfrac{1}{\left(n+2\right)+1}\);\(\dfrac{2}{\left(n+2\right)+2}\);...;\(\dfrac{2001}{\left(n+2\right)+2001}\);\(\dfrac{2002}{\left(n+2\right)+2002}\)
Vậy để các phân số trên tối giản thì n+2 phải nguyên tố với các số 1;2;...;2002
Mà để n nhỏ nhất thì n phải là số nguyên tố nhỏ nhất và phải lớn hơn 2002
Vậy n nhỏ nhất là 2003
Mk giải theo cách mk hiểu chứ ko phải chặt chẽ lắm đâu nha !!!
Với \(k\inℕ\)thì \(k\)có thể bằng \(0\)
\(\Rightarrow kn\)có thể bằng \(0\)
\(\Rightarrow\frac{m}{kn+m}=\frac{m}{0+m}=\frac{m}{m}=1\)
\(\Rightarrow\frac{m}{kn+m}\)ko phải phân số tối giản
Vậy để \(\frac{m}{kn+m}\)là phân số tối giản thì \(k\inℕ^∗\)
Chắc vậy !!!
Chúc bạn học tốt!
Bạn tham khảo tại đây nhé:
Câu hỏi của Nguyễn Thu Hà - Toán lớp 7 | Học trực tuyến - Hoc24.vn
\(x=\dfrac{2m+9}{14m+62}\)
Gọi \(linh\) là \(UCLN\left(2m+9;14,+62\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2m+9⋮linh\\14m+62⋮linh\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}14m+63⋮linh\\14m+62⋮linh\end{matrix}\right.\)
\(\Rightarrow\left(14m+63\right)-\left(14m+62\right)⋮linh\)
\(\Rightarrow14m+63-14m-62⋮linh\)
\(\Rightarrow1⋮linh\Rightarrow linh=1\)
Vậy \(x\) tối giản với mọi \(m\in N\)
Gọi d là ƯCLN(2m+9 ; 14m + 62) ( d \(\in\) N*)
\(\Rightarrow\left\{{}\begin{matrix}2m+9⋮d\\14m+62⋮d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}14m+63⋮d\\14m+62⋮d\end{matrix}\right.\)
\(\Rightarrow d⋮1\Rightarrow d=1\)
Vậy ƯCLN(2m+9;14m+62)=1
Vậy \(\dfrac{2m+9}{14m+62}\) là p/s tối giản
Gọi d là ƯCLN(12n+1;30n+2)
Ta có: \(12n+1⋮d\Rightarrow5\left(12n+1\right)=60n+5⋮d\)
\(30n+2⋮d\Rightarrow2\left(30n+2\right)=60n+4⋮d\)
\(\Rightarrow\left(60n+5\right)-60n-4⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{1;-1\right\}\)
Mà \(n\in N\Rightarrow d=1\)
Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản ĐPCM
Giải:
Gọi d = UCLN ( 12n + 1; 30n + 2 )
Ta có:
\(12n+1⋮d\)
\(\Rightarrow5\left(12n+1\right)⋮d\)
\(\Rightarrow60n+5⋮d\)
\(30n+2⋮d\)
\(\Rightarrow2\left(30n+2\right)⋮d\)
\(\Rightarrow60n+4⋮d\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow\left(60n-60n\right)+\left(5-4\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\in\left\{\pm1\right\}\)
Vì \(d\in N\) nên d = 1
Vì d = UCLN( 12n + 1; 30n + 2 )= 1 \(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản.
\(\Rightarrowđpcm\)
Gọi d là \(UCLN\left(a;b\right)\)
\(\Rightarrow1⋮d\)
\(a^n=a.a....a\) ( n chữ số a cũng chia hết cho a)
\(b^n=b.b.b.....b\) ( n chữ số b cũng chia hết cho b)
\(\Rightarrow\dfrac{a^n}{b^n}\) cũng chỉ có UCLN là 1
Vậy...
\(\left(a-b\right)^2\ge0< =>a^2+b^2\ge2ab\\ \left(b-c\right)^2\ge0< =>b^2+c^2\ge2bc\\ \left(c-a\right)^2\ge0< =>a^2+c^2\ge2ac\) ;
Cộng các vế tương ứng của 3 bất pt trên ta đc:
\(a^2+b^2+c^2\ge ab+bc+ac\)
<=> \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
<=>\(0\ge3\left(ab+bc+ac\right)\)
=> ĐPCM
Dấu = xảy ra a=b=c=0