K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2022

a) \(A=\dfrac{n+2}{n-2}=\dfrac{n-2+4}{n-2}=1+\dfrac{4}{n-2}\)

Để A có giá trị là số nguyên thì:

\(4⋮\left(n-2\right)\)

\(\Rightarrow n-2\inƯ\left(4\right)\)

\(\Rightarrow n-2\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Rightarrow n\in\left\{3;1;4;0;6;-2\right\}\)

b)  \(A=\dfrac{n+2}{n-2}=\dfrac{n-2+4}{n-2}=1+\dfrac{4}{n-2}\)

Để A là phân số tối giản thì:

\(4⋮̸\left(n-2\right)\)

\(\Rightarrow n-2\notinƯ\left(4\right)\)

\(\Rightarrow n-2\notin\left\{1;-1;2;-2;4;-4\right\}\)

\(\Rightarrow n\notin\left\{3;1;4;0;6;-2\right\}\) và \(n\in Z\) (\(n\ne2\))

c) Với \(n>2\) (hoặc \(n< -2\)) thì:

\(A=\dfrac{n+2}{n-2}>0\)

Với \(-2\le n< 2\) thì:

\(A=\dfrac{n+2}{n-2}\le0\)

*\(n=1\Rightarrow A=\dfrac{1+2}{1-2}=-3\)

*\(n=0\Rightarrow A=\dfrac{0+2}{0-2}=-1\)

*\(n=-1\Rightarrow A=\dfrac{-1+2}{-1-2}=-\dfrac{1}{3}\)

*\(n=-2\Rightarrow A=\dfrac{-2+2}{-2-2}=0\)

\(\Rightarrow\)Với \(-2\le n< 2\) thì tại \(n=1\) thì A có GTNN là -3.

Mà với các giá trị nguyên khác (khác 2) của n thì A>0.

\(\Rightarrow A_{min}=-3\), đạt được khi \(n=1\)

 

 

29 tháng 1 2021

a/ \(A=\dfrac{3n+2}{n+1}=\dfrac{3\left(n+1\right)-1}{n+1}=3-\dfrac{1}{n+1}\)

Ta có : \(\left\{{}\begin{matrix}A\in Z\\3\in Z\end{matrix}\right.\) \(\Leftrightarrow\dfrac{1}{n+1}\in Z\)

\(\Leftrightarrow1⋮n+1\Leftrightarrow n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)

Ta có :

+) \(n+1=1\Leftrightarrow n=0\left(tm\right)\)

+) \(n+1=-1\Leftrightarrow n=-2\left(tm\right)\)

Vậy...

b/ Gọi \(d=ƯCLN\) \(\left(3n+2,n+1\right)\) \(\left(d\in N\cdot\right)\)

Ta có : 

\(\left\{{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)=\left\{1\right\}\)

\(\LeftrightarrowƯCLN\) \(\left(3n+2,n+1\right)=1\)

\(\Leftrightarrow A=\dfrac{3n+2}{n+1}\) là phân số tối giản với mọi n 

Vậy...

29 tháng 1 2021

tm là gì v

AH
Akai Haruma
Giáo viên
12 tháng 2 2023

Lời giải:

a. $P=\frac{n-2}{n+5}=1-\frac{7}{n+5}$

Để $P$ nguyên thì $\frac{7}{n+5}$ nguyên. 

$\Rightarrow n+5$ là ước của $7$

$\Rightarrow n+5\in\left\{\pm 1; \pm 7\right\}$

$\Rightarrow n\in\left\{-4; -6; 2; -12\right\}$

b. 

Để phân số $P$ rút gọn được thì $n-2, n+5$ không nguyên tố cùng nhau. 

Gọi $ƯCLN(n-2, n+5)=d$ thì $n-2\vdots d; n+5\vdots d$

$\Rightarrow 7\vdots d$

Để $n-2, n+5$ không nguyên tố cùng nhau thì $d=7$

$\Rightarrow n-2\vdots 7$

$\Rightarrow n-2=7k$ với $k$ nguyên 

$\Rightarrow n=7k+2$ với $k$ là số nguyên bất kỳ.

20 tháng 3 2018

a, \(A=\frac{n+1}{n-2}\inℤ\Leftrightarrow n+1⋮n-2\)

\(\Rightarrow n-2+3⋮n-2\)

      \(n-2⋮n-2\)

\(\Rightarrow3⋮n-2\)

\(\Rightarrow n-2\inƯ\left(3\right)\)

     \(n\inℤ\Rightarrow n-2\inℤ\)

\(\Rightarrow n-2\in\left\{-1;1;-3;3\right\}\)

\(\Rightarrow n\in\left\{1;3;-1;5\right\}\)

b, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)

để A lớn nhất thì \(\frac{3}{n-2}\) lớn nhất

\(\Rightarrow n-2\) là số nguyên dương nhỏ nhất

\(\Rightarrow n-2=1\)

\(\Rightarrow n=3\)

vậy n = 3 và \(A_{max}=1+\frac{3}{1}=4\)

20 tháng 3 2018

\(a)\) Ta có : 

\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)

Để \(A\inℤ\) thì \(3⋮\left(n-2\right)\)\(\Rightarrow\)\(\left(n-2\right)\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

Suy ra : 

\(n-2\)\(1\)\(-1\)\(3\)\(-3\)
\(n\)\(3\)\(1\)\(5\)\(-1\)

Vậy \(n\in\left\{-1;1;3;5\right\}\) thì A là số nguyên 

\(b)\) Ta có : 

\(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\) ( như câu a ) 

Để A đạt GTLN thì \(\frac{3}{n-2}\) phải đạt GTLN hay \(n-2>0\) và đạt GTNN 

\(\Rightarrow\)\(n-2=1\)

\(\Rightarrow\)\(n=3\)

Suy ra : \(A=\frac{3+1}{3-2}=\frac{4}{1}=4\)

Vậy \(A_{max}=4\) khi \(n=3\)

Chúc bạn học tốt ~ 

25 tháng 6 2021

a) Để a là phân số thì \(n+4\ne0\Rightarrow n\ne-4\)

b) \(a=\frac{n+9}{n+4}=\frac{n+4+5}{n+4}=1+\frac{5}{n+4}\)

\(a=\frac{1}{2}\Rightarrow1+\frac{5}{n+4}=\frac{1}{2}\)

\(\Rightarrow\frac{5}{n+4}=\frac{1}{2}-1=-\frac{1}{2}\)

\(\frac{5}{n+4}=\frac{5}{-10}\)

\(\Rightarrow n+4=-10\Rightarrow n=-14\)

c) Để a là số nguyên thì \(\frac{5}{n+4}+1\)  có giá trị nguyên

\(\Rightarrow\frac{5}{n+4}\) có giá trị nguyên

\(\Rightarrow5⋮n+4\)

Vì \(n+4\inℤ\) nên \(n+4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{-3;-5;1;-9\right\}\)

25 tháng 6 2021

a, để a là phân số thì mẫu số phải khác 0

vây nên n+4 phải khác 0 suy ra n phải khác -4 

b, n+9/n+4=1/2 suy ra 2n+18=n+4 suy ra 2n-n=4-18 suy ra n=-14

c, a=n+9/n+4 có g trị nguyên

suy ra n+9 chia hết n+4

suy ra n+4+5 chia hết cho n+4

suy ra 5 chia hết cho n+4 hay n+4 thuộc ư(5)

suy ra n+4 thuộc (1;5;-1;-5)

suy ra n thuộc (-3;1;-5;-9)

chúc bạn hok tốt

3 tháng 3 2017

Để A là số nguyên thì n + 1 chia hết n - 2

<=> n - 2 + 3 chia hết cho n - 2

=> 3 chia hết cho n - 2

=> n - 2 thuộc Ư(3) = {-3;-1;1;3}

=> n = {-1;1;3;5}

3 tháng 3 2017

Để A là số nguyên thì n + 1 chia hết cho n - 2 

=> n - 2 + 3 chia hết cho n - 2 

=> 3 chia hết cho n - 2 

=> n - 2 thuộc Ư(3) = {-3;-1;1;3}

=> n = {-1;1;3;5}