K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2021

a/ \(A=\dfrac{3n+2}{n+1}=\dfrac{3\left(n+1\right)-1}{n+1}=3-\dfrac{1}{n+1}\)

Ta có : \(\left\{{}\begin{matrix}A\in Z\\3\in Z\end{matrix}\right.\) \(\Leftrightarrow\dfrac{1}{n+1}\in Z\)

\(\Leftrightarrow1⋮n+1\Leftrightarrow n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)

Ta có :

+) \(n+1=1\Leftrightarrow n=0\left(tm\right)\)

+) \(n+1=-1\Leftrightarrow n=-2\left(tm\right)\)

Vậy...

b/ Gọi \(d=ƯCLN\) \(\left(3n+2,n+1\right)\) \(\left(d\in N\cdot\right)\)

Ta có : 

\(\left\{{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)=\left\{1\right\}\)

\(\LeftrightarrowƯCLN\) \(\left(3n+2,n+1\right)=1\)

\(\Leftrightarrow A=\dfrac{3n+2}{n+1}\) là phân số tối giản với mọi n 

Vậy...

29 tháng 1 2021

tm là gì v

18 tháng 2 2022

a, \(A=\dfrac{n+5}{n+4}=\dfrac{n+4+1}{n+4}=1+\dfrac{1}{n+4}\Rightarrow n+4\inƯ\left(1\right)=\left\{\pm1\right\}\)

n + 41-1
n-3-5

b, đk n khác 4

Gọi ƯCLN (n+5;n+4) = d ( d\(\in Z\)

n + 5 - n - 4 = 1 => d = 1 

Vậy A là phân số tối giản với mọi giá trị nguyên, n khác 4 

 

 

20 tháng 5 2022

a) \(A=\dfrac{n+2}{n-2}=\dfrac{n-2+4}{n-2}=1+\dfrac{4}{n-2}\)

Để A có giá trị là số nguyên thì:

\(4⋮\left(n-2\right)\)

\(\Rightarrow n-2\inƯ\left(4\right)\)

\(\Rightarrow n-2\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Rightarrow n\in\left\{3;1;4;0;6;-2\right\}\)

b)  \(A=\dfrac{n+2}{n-2}=\dfrac{n-2+4}{n-2}=1+\dfrac{4}{n-2}\)

Để A là phân số tối giản thì:

\(4⋮̸\left(n-2\right)\)

\(\Rightarrow n-2\notinƯ\left(4\right)\)

\(\Rightarrow n-2\notin\left\{1;-1;2;-2;4;-4\right\}\)

\(\Rightarrow n\notin\left\{3;1;4;0;6;-2\right\}\) và \(n\in Z\) (\(n\ne2\))

c) Với \(n>2\) (hoặc \(n< -2\)) thì:

\(A=\dfrac{n+2}{n-2}>0\)

Với \(-2\le n< 2\) thì:

\(A=\dfrac{n+2}{n-2}\le0\)

*\(n=1\Rightarrow A=\dfrac{1+2}{1-2}=-3\)

*\(n=0\Rightarrow A=\dfrac{0+2}{0-2}=-1\)

*\(n=-1\Rightarrow A=\dfrac{-1+2}{-1-2}=-\dfrac{1}{3}\)

*\(n=-2\Rightarrow A=\dfrac{-2+2}{-2-2}=0\)

\(\Rightarrow\)Với \(-2\le n< 2\) thì tại \(n=1\) thì A có GTNN là -3.

Mà với các giá trị nguyên khác (khác 2) của n thì A>0.

\(\Rightarrow A_{min}=-3\), đạt được khi \(n=1\)

 

 

19 tháng 5 2021

tụi bay là ai

AH
Akai Haruma
Giáo viên
7 tháng 9

Lời giải:

a. Để phân số đã cho có giá trị nguyên thì:

$n+9\vdots n-6$

$\Rightarrow (n-6)+15\vdots n-6$
$\Rightarrow 15\vdots n-6$

Mà $n>6$ nên $n-6>0$

$\Rightarrow n-6\in\left\{1;3;5;15\right\}$

$\Rightarrow n\in \left\{7; 9; 11; 21\right\}$

b.

Gọi $d=ƯCLN(n+9, n-6)$

$\Rightarrow n+9\vdots d; n-6\vdots d$

$\Rightarrow (n+9)-(n-6)\vdots d$

$\Rightarrow 15\vdots d$

Để ps đã cho tối giản thì $(d,15)=1$
$\Rightarrow (3,d)=(5,d)=1$

Điều này xảy ra khi: 

$n-6\not\vdots 3; n-6\not\vdots 5$

$\Rightarrow n\not\vdots 3$ và $n-1\not\vdots 5$

$\Rightarrow n\not\vdots 3$ và $n\neq 5k+1$ với $k$ nguyên.

a: Để A nguyên thì \(n+2\in\left\{1;-1;3;-3\right\}\)

=>\(n\in\left\{-1;-3;1;-5\right\}\)

b: n+6/n+7

Gọi d=ƯCLN(n+6;n+7)

=>n+6-n-7 chiahết cho d

=>-1 chia hết cho d

=>d=1

=>PSTG

a) Để A có giá trị nguyên thì \(n-5⋮n+1\)

\(\Leftrightarrow n+1-6⋮n+1\)

mà \(n+1⋮n+1\)

nên \(-6⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(-6\right)\)

\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

Vậy: \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

b)

Ta có: \(A=\dfrac{n-5}{n+1}\)

\(=\dfrac{n+1-6}{n+1}\)

\(=1-\dfrac{6}{n+1}\)

Để A là phân số tối giản thì ƯCLN(n-5;n+1)=1

\(\LeftrightarrowƯCLN\left(6;n+1\right)=1\)

\(\Leftrightarrow n+1⋮̸6\)

\(\Leftrightarrow n+1\ne6k\left(k\in N\right)\)

\(\Leftrightarrow n\ne6k-1\left(k\in N\right)\)

Vậy: Khi \(n\ne6k-1\left(k\in N\right)\) thì A là phân số tối giản

2 tháng 2 2021

\(a)\,\,A=\dfrac{13}{21} \Leftrightarrow \dfrac{2n+3}{4n+1}=\dfrac{13}{21} \\ \Leftrightarrow 21(2n+3)=13(4n+1)\\\Leftrightarrow 42n+63=52n+13\\\Leftrightarrow 42n-52n=13-63 \\\Leftrightarrow -10n=-50\\\Leftrightarrow n=(-50):(-10)\\\Leftrightarrow n=5\)