\(\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}\) (Đk: x \(\neq \)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2021

a, ĐK :  \(x\ge0;x\ne4\)

b, \(P=\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}=\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)

6 tháng 9 2021

a)\(\frac{\sqrt[2]{X}+2}{\sqrt{x}-3}\)<  1 <=> \(\frac{\sqrt[2]{X}+2}{\sqrt{x}-3}\)- 1 < 0 <=> \(\frac{\sqrt{X}+2-\sqrt{x}+3}{\sqrt{x}-3}\)< 0 <=> \(\frac{5}{\sqrt{x}-3}\)< 0 Mà 5 > 0

=> \(\sqrt{x}-3< 0\)<=> \(\sqrt{X}< 3\)<=> \(x< 9\)

Câu b làm tương tự nha

6 tháng 9 2021

b, \(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}\le2\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}-3}-2\le0\)

\(\Leftrightarrow\frac{\sqrt{x}+2-2\sqrt{x}+6}{\sqrt{x}-3}\le0\Leftrightarrow\frac{-\sqrt{x}+8}{\sqrt{x}-3}\le0\)

TH1 : \(\hept{\begin{cases}8-\sqrt{x}\le0\\\sqrt{x}-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}-\sqrt{x}\le-8\\\sqrt{x}\ge3\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x}\ge8\\\sqrt{x}\ge3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge64\\x\ge9\end{cases}\Leftrightarrow}x\ge64}\)

TH2 : \(\hept{\begin{cases}8-\sqrt{x}\ge0\\\sqrt{x}-3\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}\le8\\\sqrt{x}\le3\end{cases}\Leftrightarrow\hept{\begin{cases}x\le64\\x\le9\end{cases}}\Leftrightarrow x\le9}\)

Kết hợp với đk : \(0\le x< 9\)

21 tháng 8 2019
https://i.imgur.com/7Gi05HK.jpg
21 tháng 8 2019
https://i.imgur.com/lpCsO1V.jpg
6 tháng 9 2021

phần b là \(2\sqrt{2}\) nhé cacban

27 tháng 5 2018

Ta có \(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)

Để A nguyên thì \(\frac{2}{\sqrt{x}+1}\)phải nguyên suy ra \(\sqrt{x}+1\)là ước của 2

Ta thấy \(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\) mà điều kiện cho \(x\ge0\)và \(x\ne1\)nên \(\sqrt{x}+1\in\left\{1;2\right\}\)

Với \(\sqrt{x}+1=1\Rightarrow\sqrt{x}=0\Rightarrow x=0\)(thoải mãn )

Với \(\sqrt{x}+1=2\Rightarrow\sqrt{x}=1\Rightarrow x=1\)(loại)

Vậy x = 0 thì A nguyên

19 tháng 7 2018

a) ĐKXĐ: \(x\ne9\)

\(P=\frac{x\sqrt{x}+5\sqrt{x}-12-2\left(\sqrt{x}-3\right)^2-\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{x\sqrt{x}+5\sqrt{x}-12-2x+12\sqrt{x}-18-x-5\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{x\sqrt{x}-3x+12\sqrt{x}-36}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{\left(\sqrt{x}-3\right)\left(x+12\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{x+12}{\sqrt{x}+2}\)

b) Ta có: \(P=\frac{x+12}{\sqrt{x}+2}=\frac{x-4+16}{\sqrt{x}+2}=\sqrt{x}-2+\frac{16}{\sqrt{x}+2}\)

\(=\left(\sqrt{x}+2\right)+\frac{16}{\sqrt{x}+2}-4\)

\(\ge2\sqrt{\left(\sqrt{x}+2\right).\frac{16}{\sqrt{x}+2}}-4=4\)

P = 4 thì \(\left(\sqrt{x}+2\right)^2=16\Rightarrow\sqrt{x}=2\Rightarrow x=4\)

Vậy GTNN của P là 4 khi x = 4.

8 tháng 10 2017

1.

a. ĐKXĐ : x lớn hơn hoặc bằng 1/2 

b. A\(\sqrt{2}\)\(\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}\)

\(\sqrt{2x-1+1+2\sqrt{2x-1}}-\sqrt{2x-1+1-2\sqrt{2x-1}}\)

=\(\sqrt{\left(\sqrt{2x-1}+1\right)^2}-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)

\(\sqrt{2x-1}+1-\left|\sqrt{2x-1}-1\right|\)

Nếu \(x\ge1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(\sqrt{2x-1}-1\right)=2\)

\(\Rightarrow A=2\)

Nếu 1/2 \(\le x< 1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(1-\sqrt{2x-1}\right)=2\sqrt{2x-1}\)

Do đó : A= \(\sqrt{4x-2}\)

Vậy ............

8 tháng 10 2017

2. 

a. \(x\ge2\)hoặc x<0

b. A= \(2\sqrt{x^2-2x}\)

c. A<2 \(\Leftrightarrow\)\(2\sqrt{x^2-2x}< 2\Leftrightarrow\sqrt{x^2-2x}< 1\Leftrightarrow x^2-2x< 1\Leftrightarrow\left(x-1\right)^2< 2\)

\(-\sqrt{2}< x-1< \sqrt{2}\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)

Kết hợp vs đk câu a , ta đc : \(1-\sqrt{2}< x< 0và2\le x< 1+\sqrt{2}\)

Vậy...........

4 tháng 7 2019

Bài 2 xét x=0 => A =0

xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)

để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)

=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?

4 tháng 7 2019

1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)

=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)

\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)

\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)

=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)

=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)

=> M=0

Vậy M=0