\(\frac{1}{2005}+\frac{1}{2006}+...+\frac{1}{2014}\)

Chứng minh 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

=> 1/P = 2005 + 2006 + ... + 2014
           = ( 2005 + 2014 ) . [ ( 2014 - 2005 ) : 1 + 1 ] : 2
           = 4019 . 10 : 2
           = 20095
Mà 1/P = 20095 > 201 chứ  không < 201
=> điều không thể chứng minh hoặc sai đề bài và có một khả năng khác : tôi làm sai.
*Hãy chỉ tôi cách viết dấu gạch của phân số nhé!

https://hoc24.vn/hoi-dap/question/592713.html

23 tháng 3 2019

Câu 2a:

Ta có :

\(\frac{1}{101}>\dfrac{1}{150}\)

\(\frac{1}{102}>\dfrac{1}{150}\)

\(....................\)

\(\dfrac{1}{150}=\dfrac{1}{150}\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+......+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+......+\dfrac{1}{150}\) ( có 50 số hạng )

\(\Rightarrow A>\dfrac{1}{150}.50\)

\(\Rightarrow A>\dfrac{1}{3}\) ( 1 )

Ta có :

\(\dfrac{1}{101}< \dfrac{1}{100}\)

\(\dfrac{1}{102}< \dfrac{1}{100}\)

\(.................\)

\(\dfrac{1}{150}< \dfrac{1}{100}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+....+\frac{1}{150}< \dfrac{1}{100}+\dfrac{1}{100}+........+\dfrac{1}{100}\) ( có 50 số hạng )

\(\Rightarrow A< \dfrac{1}{100}.50\)

\(\Rightarrow A< \dfrac{1}{2}\) ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\dfrac{1}{3}< A< \dfrac{1}{2}\)

\(\Rightarrow\)Điều phải chứng minh

23 tháng 3 2019

Câu 2b với 2c tương tự nên mk sẽ làm 2b nha

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)

\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2006}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1003}\right)\)

\(A=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\left(đpcm\right)\)

19 tháng 4 2017

Ta có: A=1/201+1/202+1/203+...+1/300

=(1/201+1/202+...+1/250)+(1/251+1/252+...+1/300)

Ta có

1/201+1/202+...+1/250<1/200+1/200+...+1/200=50.1/200=50/200=1/4                   (1)

1/251+1/252+...+1/300<1/250+1/250+...+1/250=50.1/250=50/250=1/5                   (2)

từ (1) và (2)=> A<1/4+1/5=>A<9/20

Vậy A<9/20

~~~CHÚC BẠN HỌC GIỎI~~~        

=>A=

25 tháng 4 2024

Ta có: A=1/201+1/202+1/203+...+1/300

=(1/201+1/202+...+1/250)+(1/251+1/252+...+1/300)

Ta có

1/201+1/202+...+1/250<1/200+1/200+...+1/200=50.1/200=50/200=1/4                   (1)

1/251+1/252+...+1/300<1/250+1/250+...+1/250=50.1/250=50/250=1/5                   (2)

từ (1) và (2)=> A<1/4+1/5=>A<9/20

Vậy A<9/20

28 tháng 3 2017

????????

22 tháng 7 2019

Mik lười quá bạn tham khảo câu 3 tại đây nhé:

Câu hỏi của nguyen linh nhi - Toán lớp 6 - Học toán với OnlineMath

22 tháng 7 2019

\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\)

\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)

\(2S=\frac{1}{2}-\frac{1}{38\cdot39}\)

\(S=\frac{1}{4}-\frac{1}{2\cdot38\cdot39}< \frac{1}{4}\)

4 tháng 9 2018

Ta có:

\(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{199}{200}< \frac{200}{201}\)

\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{199}{200}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{200}{201}\)

\(\Rightarrow C< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{200}{201}\)

\(\Rightarrow C^2< \left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{200}{201}\right).\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{199}{200}\right)\)

\(\Rightarrow C^2< \frac{1}{201}\left(dpcm\right)\)