Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{145.146-15}{145.145+130}=\frac{145.145+145-15}{145.145+130}=\frac{145.145+130}{145.145+130}=1\)
2) \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{31.34}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{31}-\frac{1}{34}=1-\frac{1}{34}=\frac{33}{34}\)
2/
Ta có: \(\frac{1}{101}>\frac{1}{150}\)
\(\frac{1}{102}>\frac{1}{150}\)
\(\frac{1}{103}>\frac{1}{150}\)
..............
\(\frac{1}{149}>\frac{1}{150}\)
\(\Rightarrow A>\frac{1}{150}+\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\)(có 50 p/s)
\(\Rightarrow A>\frac{1}{150}.50=\frac{50}{150}=\frac{1}{3}\) (1)
Lại có: \(\frac{1}{101}< \frac{1}{100}\)
\(\frac{1}{102}< \frac{1}{100}\)
\(\frac{1}{103}< \frac{1}{100}\)
...............
\(\frac{1}{150}< \frac{1}{100}\)
\(\Rightarrow A>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)(có 50 p/s)
\(\Rightarrow A>\frac{1}{100}.50=\frac{50}{100}=\frac{1}{2}\) (2)
Từ (1) và (2) => \(\frac{1}{3}< A< \frac{1}{2}\)(ĐPCM)
1/
z O x y 80* t t'
a, Ta có: góc xOy + góc yOz = 180 độ (kề bù)
80 độ + góc yOz = 180 độ
góc yOz = 180 độ - 80 độ = 100 độ
b,* Vì Ot là tia phân giác của yOz nên:
\(\widehat{yOt}=\widehat{zOt}=\frac{\widehat{yOz}}{2}=\frac{100^o}{2}=50^o\)
* Vì Ot' là tia phân giác của góc xOy nên:
\(\widehat{xOt'}=\widehat{yOt'}=\frac{\widehat{xOy}}{2}=\frac{80^o}{2}=40^o\)
\(\Rightarrow\widehat{tOt'}=\widehat{yOt}+\widehat{yOt'}=50^o+40^o=90^o\)
Mà góc vuông có số đo là 90 độ
Vậy góc tOt' là góc vuông
Hình bạn tự vẽ
Tia Oc nằm giữa 2 tia OA,OB nên
\(\widehat{AoC}\)\(+\)\(\widehat{CoB}\)\(=\)\(\widehat{AoB}\) \(\left(1\right)\)
=>\(\widehat{Aoc}+\widehat{CoB}\)\(=90^0\)
Theo đề ta có \(\frac{1}{4}AoC=\frac{1}{5}CoB\left(2\right)\)
Từ \(\left(2\right)\) \(\Rightarrow AoC=\frac{4}{5}CoB\)
Thay \(\frac{4}{5}CoB+CoB=90^0\)
\(=\frac{9}{5}CoB=90^0\)
\(CoB=90^0\div\frac{9}{5}=50^0\)
\(D=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{9999}{100^2}\)
\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{99.101}{100^2}\)
\(=\frac{1.2...99}{2.3...100}.\frac{3.4....101}{2.3....100}=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)
1 b) Đặt A=\(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{66}+\frac{1}{78}\)
=> \(\frac{A}{2}=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{132}+\frac{1}{156}=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{11.12}+\frac{1}{12.13}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}=\frac{1}{3}-\frac{1}{13}\)
=> \(A=\frac{2}{3}-\frac{2}{13}\)\(=\frac{20}{39}\)
Ta có: \(\frac{x}{6}+\frac{x}{10}+\frac{x}{15}+\frac{x}{21}+...+\frac{x}{78}=\frac{220}{39}\)
<=> \(x\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{15}+...+\frac{1}{78}\right)=\frac{220}{39}\Leftrightarrow x.\frac{20}{39}=\frac{220}{39}\Leftrightarrow x=11\)
Câu 2a:
Ta có :
\(\frac{1}{101}>\dfrac{1}{150}\)
\(\frac{1}{102}>\dfrac{1}{150}\)
\(....................\)
\(\dfrac{1}{150}=\dfrac{1}{150}\)
\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+......+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+......+\dfrac{1}{150}\) ( có 50 số hạng )
\(\Rightarrow A>\dfrac{1}{150}.50\)
\(\Rightarrow A>\dfrac{1}{3}\) ( 1 )
Ta có :
\(\dfrac{1}{101}< \dfrac{1}{100}\)
\(\dfrac{1}{102}< \dfrac{1}{100}\)
\(.................\)
\(\dfrac{1}{150}< \dfrac{1}{100}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+....+\frac{1}{150}< \dfrac{1}{100}+\dfrac{1}{100}+........+\dfrac{1}{100}\) ( có 50 số hạng )
\(\Rightarrow A< \dfrac{1}{100}.50\)
\(\Rightarrow A< \dfrac{1}{2}\) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\dfrac{1}{3}< A< \dfrac{1}{2}\)
\(\Rightarrow\)Điều phải chứng minh
Câu 2b với 2c tương tự nên mk sẽ làm 2b nha
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2006}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1003}\right)\)
\(A=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\left(đpcm\right)\)