Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\Delta=\left(-1\right)^2-4\cdot1\cdot\left(-2m-10\right)\)
\(=1+4\left(2m+10\right)\)
\(=8m+41\)
Để phương trình (1) có nghiệm thì \(8m+41\ge0\)
hay \(m\ge-\dfrac{41}{8}\)
b: Vì (d1)//(d3) nên a=1
hay (d1): y=x+b
Thay x=2 và y=3 vào (d1), ta được:
b+2=3
hay b=1
a: Để (d)//(d1) thì \(\left\{{}\begin{matrix}m^2-2=2\\m-1\ne-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2=4\\m\ne-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\ne-2\end{matrix}\right.\)
=>m=2
b: Để (d) trùng với (d2) thì
\(\left\{{}\begin{matrix}m^2-2=-1\\m-1=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2=1\\m=-1\end{matrix}\right.\)
=>m=-1
c:
Để (d) cắt (d3) thì \(m^2-2\ne3\)
=>\(m^2\ne5\)
=>\(m\ne\pm\sqrt{5}\)
Thay x=-1 vào y=3x-2, ta được:
\(y=3\left(-1\right)-2=-5\)
Thay x=-1 và y=-5 vào (d), ta được:
\(-\left(m^2-2\right)+m-1=-5\)
=>\(-m^2+2+m-1+5=0\)
=>\(-m^2+m+6=0\)
=>\(m^2-m-6=0\)
=>(m-3)(m+2)=0
=>\(\left[{}\begin{matrix}m-3=0\\m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\left(nhận\right)\\m=-2\left(nhận\right)\end{matrix}\right.\)
d: Để (d) vuông góc với (d4) thì \(\dfrac{4}{5}\left(m^2-2\right)=-1\)
=>\(m^2-2=-1:\dfrac{4}{5}=-\dfrac{5}{4}\)
=>\(m^2=\dfrac{3}{4}\)
=>\(m=\pm\dfrac{\sqrt{3}}{2}\)
Để (d1) cắt (d2) tại một điểm trên trục tung thì
\(\left\{{}\begin{matrix}m-2\ne-2\\m^2+5m+6=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne0\\m^2+5m=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\left(m+5\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne0\\\left[{}\begin{matrix}m=0\\m+5=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m+5=0\)
=>m=-5
a: Để hai đồ thị song song thì m=2
b: Để hai đồ thị vuông góc thì 2m=-1
hay \(m=-\dfrac{1}{2}\)
a: Thay m=1 vào pt, ta được:
\(x^2-1=0\)
=>(x-1)(x+1)=0
=>x=1 hoặc x=-1
b: \(\text{Δ}=\left(2m-2\right)^2-4\cdot\left(-m\right)\)
\(=4m^2-8m+4+4m\)
\(=4m^2-4m+4\)
\(=4\left(m^2-m+1\right)\)
\(=4m^2-4m+1+3=\left(2m-1\right)^2+3>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Ta có: \(2\left(x_1+x_2\right)-3x_1x_2+9=0\)
\(\Leftrightarrow2\cdot\left[-2\left(m-1\right)\right]-3\cdot\left(-m\right)+9=0\)
\(\Leftrightarrow-4\left(m-1\right)+3m+9=0\)
=>-4m+4+3m+9=0
=>13-m=0
hay m=13
a, Thay m = 1 ta được
\(x^2-1=0\Leftrightarrow x=1;x=-1\)
b,
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-1\right)\\x_1x_2=-m\end{matrix}\right.\)
\(-4\left(m-1\right)+3m+9=0\Leftrightarrow-m+13=0\Leftrightarrow m=13\)
a: Để hai đường song song thì
\(\left\{{}\begin{matrix}2m^2-m=1\\m^2+m< >2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(2m+1\right)=0\\\left(m+2\right)\left(m-1\right)< >0\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)
b: Thay x=2 vào (d1), ta đc:
\(y=2+2=4\)
Vì (d3) vuông góc với (d1) nên (d3): y=-x+b
Thay x=2 và y=4 vào (d3), ta được:
b-2=4
=>b=6
Lời giải:
a.
Đồ thị màu xanh lá: $y=\frac{1}{2}x+1$
Đồ thị màu xanh dương: $y=-x-1$
b.
Ta có:
$\tan \alpha=\frac{1}{2}\Rightarrow \alpha=26,57^0$
$\tan \beta = -1\Rightarrow \beta=135^0$
a: Để hai đường song song thì 3m^2+1=4m và m^2-9<>-m-5
=>(m-1)(3m-1)=0 và m^2+m-4<>0
=>m=1 hoặc m=1/3
b: Để hai đường cắt nhau thì 3m^2+1<>4m
=>m<>1 và m<>1/3
Khi m=2 thì (d1): \(y=8x-7\)
(d2): y=13x-5
Toa độ giao điểm là:
8x-7=13x-5 và y=8x-7
=>-5x=-5+7=2 và y=8x-7
=>x=-2/5 và y=-16/5-7=-16/5-35/5=-51/5
Phương trình hoành độ giao điểm của (P) và (d):
\(x^2=mx-m+1\)
\(\Leftrightarrow x^2-mx+m-1=0\)
\(\Delta=\left(-m\right)^2-4.1.\left(m-1\right)\)
\(=m^2-4m+4\)
\(=\left(m-2\right)^2\ge0\) với mọi \(m\in R\)
Phương trình luôn có hai nghiệm
Theo hệ thức Vi-ét, ta có:
\(x_1+x_2=\dfrac{-\left(-m\right)}{1}=m\left(1\right)\)
\(x_1.x_2=\dfrac{m-1}{1}=m-1\left(2\right)\)
Lại có:
\(x_1=9x_2\) thế vào (1), ta có:
\(9x_2+x_2=m\)
\(\Leftrightarrow10x_2=m\)
\(\Leftrightarrow x_2=\dfrac{m}{10}\) thế vào (2), ta có:
\(x_1.\dfrac{m}{10}=m-1\)
\(\Leftrightarrow x_1=\dfrac{10m-10}{m}\)
\(\Rightarrow\dfrac{10m-10}{m}=\dfrac{9m}{10}\)
\(\Leftrightarrow9m^2=100m-100\)
\(\Leftrightarrow9m^2-100m+100=0\)
\(\Leftrightarrow9m^2-10m-90m+100=0\)
\(\Leftrightarrow\left(9m^2-10m\right)-\left(90m-100\right)=0\)
\(\Leftrightarrow m\left(9m-10\right)-10\left(9m-10\right)=0\)
\(\Leftrightarrow\left(9m-10\right)\left(m-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}9m-10=0\\m-10=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}9m=10\\m=10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{10}{9}\\m=10\end{matrix}\right.\)
Vậy \(m=\dfrac{10}{9};m=10\) thì phương trình đã cho có hai nghiệm thỏa mãn đề bài