\(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{x\sqrt{x}+\sqrt{x}-2x^2}{x+1}\) ( với...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

a,\(ĐKXĐ:x\in R|x>0\)( Vì cả 2 mẫu đều >0)

Xét:\(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{\sqrt{x}\left(\sqrt{x^3}+1\right)}{x-\sqrt{x}+1}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}=\sqrt{x}\left(\sqrt{x}+1\right)=x+\sqrt{x}\)

\(\Rightarrow\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{x\sqrt{x}+\sqrt{x}-2x^2}{x+1}=\dfrac{3x^2+x}{x+1}=P\\ \)

b, \(P< 2\Leftrightarrow\dfrac{3x^2+x}{x+1}< 2\Rightarrow3x^2-x-2< 0\Rightarrow\left(3x+2\right)\left(x-1\right)< 0\Rightarrow-\dfrac{2}{3}< x< 1\\ \)c, \(P\in Z\Leftrightarrow\dfrac{3x^2+x}{x+1}\in Z\Leftrightarrow3x^2+x⋮x+1\)

Tự lm nốt nhé.

22 tháng 8 2017

1) điều kiện \(x\ge0;x\ne\dfrac{1}{49}\)

\(Q=\dfrac{\sqrt{x}+4}{1-7\sqrt{x}}+\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{24\sqrt{x}}{7x+6\sqrt{x}-1}\)

\(Q=\dfrac{-\sqrt{x}-4}{7\sqrt{x}-1}+\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{24\sqrt{x}}{\left(7\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(Q=\dfrac{\left(-\sqrt{x}-4\right)\left(\sqrt{x}+1\right)+\left(\sqrt{x}-2\right)\left(7\sqrt{x}-1\right)+24\sqrt{x}}{\left(7\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(Q=\dfrac{-x-\sqrt{x}-4\sqrt{x}-4+7x-\sqrt{x}-14\sqrt{x}+2+24\sqrt{x}}{\left(7\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(Q=\dfrac{6x+4\sqrt{x}-2}{\left(7\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(6\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(7\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}\)

20 tháng 10 2018

1) +) ta có : \(C-\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{3}=\dfrac{3\sqrt{x}-x+\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{-\left(x-4\sqrt{x}+4\right)+3}{3\left(x+\sqrt{x}+1\right)}=\dfrac{-\left(\sqrt{x}-2\right)^2+3}{3\left(x+\sqrt{x}+1\right)}\)

không thể cm được đâu bn --> xem lại đề

2) +) ta có : \(D=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)

--> để \(D\in Z\Leftrightarrow\sqrt{x}+2\) là ước của 3 \(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow x=1\) vậy \(x=1\)

3) +) tương tự 2)

4) a) +) điều kiện xác định : \(x>0;x\ne4\)

ta có : \(A=\left(\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}-2}{x+3\sqrt{x}}\)

\(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}-\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)

b) ta có : \(A=3\Leftrightarrow\dfrac{\sqrt{x}-3}{\sqrt{x}-2}=3\Leftrightarrow\sqrt{x}-3=3\sqrt{x}-6\)

\(\Leftrightarrow2\sqrt{x}=3\Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\) vậy \(x=\dfrac{9}{4}\)

c) ta có : \(B=A.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{x-9}{x-4}=1-\dfrac{5}{x-4}\)

tương tự 2 )
\(\)

6 tháng 7 2016

điều kiện \(x\ge0\)và x khác 1/4

Q= \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}=\frac{3x+14\sqrt{x}+8+2x-3\sqrt{x}+1-x+6\sqrt{x}-5}{2x+7\sqrt{x}-4}\)

=\(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}\)

đề Q>1/2 thì \(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}>\frac{1}{2}\)

<=> \(8x+34\sqrt{x}+8>2x+7\sqrt{x}-4\)<=> \(6x+27\sqrt{x}+12>0\) với mọi x>=0

vậy Q>1/2 khi x>=0 và x khác 1/4

6 tháng 7 2016

cảm ơn nhiều

25 tháng 5 2019

a) P = \(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}-\frac{\sqrt{x}-1}{x+\sqrt{x}}\right)\).

P = \(\frac{\sqrt{x}.\sqrt{x}-1}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\sqrt{x}\left(\sqrt{x}-1\right)}\)

P = \(\frac{x-1}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{x-1-x+\sqrt{x}}\)

P = \(\frac{x-1}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

P = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

P = \(\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

P = \(x-1\).

b) P = \(\frac{9}{2}\).

\(x-1=\frac{9}{2}\)

\(x=\frac{11}{2}\).

Vậy \(x=\frac{11}{2}\)thì P = \(\frac{9}{2}\).

25 tháng 5 2019

Thank you,bn.

Bài 2: 

a: \(P=\dfrac{a-1}{2\sqrt{a}}\cdot\left(\dfrac{\sqrt{a}\left(a-2\sqrt{a}+1\right)-\sqrt{a}\left(a+2\sqrt{a}+1\right)}{a-1}\right)\)

\(=\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{2}=-2\sqrt{a}\)

b: Để P>=-2 thì P+2>=0

\(\Leftrightarrow-2\sqrt{a}+2>=0\)

=>0<=a<1

24 tháng 6 2017

ĐKXĐ \(x\ge0,x\ne4\)

a) \(B=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}+1\right)-\left(x+5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-2\sqrt{x}-\sqrt{x}+2-\left(x+\sqrt{x}+3\sqrt{x}+3\right)-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-x-7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\dfrac{-\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+6}{2-\sqrt{x}}\)

b) B > -1 <=> B + 1 > 0.

\(\Leftrightarrow\dfrac{\sqrt{x}+6}{2-\sqrt{x}}+1>0\Leftrightarrow\dfrac{8}{2-\sqrt{x}}>0\)

=> \(2-\sqrt{x}>0\Leftrightarrow\sqrt{x}< 2\Rightarrow x< 4\)

Vậy \(0\le x< 4\) thì B > -1.

c) \(B=\dfrac{\sqrt{x}+6}{2-\sqrt{x}}=-1-\dfrac{8}{2-\sqrt{x}}\in Z\)

\(\Rightarrow2-\sqrt{x}\inƯ_{\left(8\right)}=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{1;3;0;4;-2;6;-6;10\right\}\)

\(\Rightarrow x\in\left\{1;9;0;16;36;100\right\}\)thì \(B\in Z\)

24 tháng 6 2017

a) đk : \(x\ne4;x\ge0\)

B = \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{x+5}{x-\sqrt{x}-2}\)

B = \(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)-\left(x+5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

B = \(\dfrac{x-2\sqrt{x}-\sqrt{x}+2-\left(x+\sqrt{x}+3\sqrt{x}+3\right)-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

B = \(\dfrac{x-2\sqrt{x}-\sqrt{x}+2-x-\sqrt{x}-3\sqrt{x}-3-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

B = \(\dfrac{-x-7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\) = \(\dfrac{\left(-\sqrt{x}-6\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

B = \(\dfrac{-\sqrt{x}-6}{\sqrt{x}-2}\)

đè hinh như là 6\(\sqrt{x}\) nhi bạn