\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

ĐKXĐ \(x\ge0,x\ne4\)

a) \(B=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}+1\right)-\left(x+5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-2\sqrt{x}-\sqrt{x}+2-\left(x+\sqrt{x}+3\sqrt{x}+3\right)-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-x-7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\dfrac{-\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+6}{2-\sqrt{x}}\)

b) B > -1 <=> B + 1 > 0.

\(\Leftrightarrow\dfrac{\sqrt{x}+6}{2-\sqrt{x}}+1>0\Leftrightarrow\dfrac{8}{2-\sqrt{x}}>0\)

=> \(2-\sqrt{x}>0\Leftrightarrow\sqrt{x}< 2\Rightarrow x< 4\)

Vậy \(0\le x< 4\) thì B > -1.

c) \(B=\dfrac{\sqrt{x}+6}{2-\sqrt{x}}=-1-\dfrac{8}{2-\sqrt{x}}\in Z\)

\(\Rightarrow2-\sqrt{x}\inƯ_{\left(8\right)}=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{1;3;0;4;-2;6;-6;10\right\}\)

\(\Rightarrow x\in\left\{1;9;0;16;36;100\right\}\)thì \(B\in Z\)

24 tháng 6 2017

a) đk : \(x\ne4;x\ge0\)

B = \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{x+5}{x-\sqrt{x}-2}\)

B = \(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)-\left(x+5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

B = \(\dfrac{x-2\sqrt{x}-\sqrt{x}+2-\left(x+\sqrt{x}+3\sqrt{x}+3\right)-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

B = \(\dfrac{x-2\sqrt{x}-\sqrt{x}+2-x-\sqrt{x}-3\sqrt{x}-3-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

B = \(\dfrac{-x-7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\) = \(\dfrac{\left(-\sqrt{x}-6\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

B = \(\dfrac{-\sqrt{x}-6}{\sqrt{x}-2}\)

20 tháng 10 2018

1) +) ta có : \(C-\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{3}=\dfrac{3\sqrt{x}-x+\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{-\left(x-4\sqrt{x}+4\right)+3}{3\left(x+\sqrt{x}+1\right)}=\dfrac{-\left(\sqrt{x}-2\right)^2+3}{3\left(x+\sqrt{x}+1\right)}\)

không thể cm được đâu bn --> xem lại đề

2) +) ta có : \(D=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)

--> để \(D\in Z\Leftrightarrow\sqrt{x}+2\) là ước của 3 \(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow x=1\) vậy \(x=1\)

3) +) tương tự 2)

4) a) +) điều kiện xác định : \(x>0;x\ne4\)

ta có : \(A=\left(\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}-2}{x+3\sqrt{x}}\)

\(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}-\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)

b) ta có : \(A=3\Leftrightarrow\dfrac{\sqrt{x}-3}{\sqrt{x}-2}=3\Leftrightarrow\sqrt{x}-3=3\sqrt{x}-6\)

\(\Leftrightarrow2\sqrt{x}=3\Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\) vậy \(x=\dfrac{9}{4}\)

c) ta có : \(B=A.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{x-9}{x-4}=1-\dfrac{5}{x-4}\)

tương tự 2 )
\(\)

23 tháng 7 2018

a) ĐKXĐ: \(x\ge0;x\ne9\) . Rút gọn: \(A=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{\sqrt{x}-3}-\dfrac{x-4\sqrt{x}+7}{x-2\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{\sqrt{x}-3}-\dfrac{x-4\sqrt{x}+7}{x+\sqrt{x}-3\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{\sqrt{x}-3}-\dfrac{x-4\sqrt{x}+7}{\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{\sqrt{x}-3}-\dfrac{x-4\sqrt{x}+7}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)-x+4\sqrt{x}-7}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x-3\sqrt{x}-2\sqrt{x}+6+x+\sqrt{x}+3\sqrt{x}+3-x+4\sqrt{x}-7}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x+\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)

23 tháng 7 2018

A>-1\(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)>-1\(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+1>0\Leftrightarrow\dfrac{\sqrt{x}+2+\sqrt{x}-3}{\sqrt{x}-3}>0\Leftrightarrow\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2\sqrt{x}-1>0\\\sqrt{x}-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}2\sqrt{x}-1< 0\\\sqrt{x}-3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}>0,5\\\sqrt{x}>3\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}< 0,5\\\sqrt{x}< 3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0,25\\x>9\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0,25\\x< 9\end{matrix}\right.\end{matrix}\right.\Leftrightarrow}}\left[{}\begin{matrix}x>9\\0\le x< 0,25\end{matrix}\right.\)

Bài 1: 

a: \(B=\dfrac{\sqrt{x}+x+\sqrt{x}-x}{1-x}\cdot\dfrac{x-1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)

b: Để B=-1 thì \(2\sqrt{x}=-\sqrt{x}+3\)

=>3 căn x=3

=>căn x=1

hay x=1(loại)

Bài 2: 

a: \(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

b: Thay \(x=5-2\sqrt{6}\) vào A, ta được:

\(A=\dfrac{-5\left(\sqrt{3}-\sqrt{2}\right)+2}{\sqrt{3}-\sqrt{2}+3}=\dfrac{-5\sqrt{3}+5\sqrt{2}+2}{\sqrt{3}-\sqrt{2}+3}\simeq0,124\)

d: Để A=1/2 thì \(\sqrt{x}+3=-10\sqrt{x}+4\)

\(\Leftrightarrow11\sqrt{x}=1\)

hay x=1/121

17 tháng 7 2018

\(1.a.A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\left(x\ge0;x\ne4;x\ne9\right)\)

\(b.A< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)

\(\Leftrightarrow\sqrt{x}-2< 0\)

\(\Leftrightarrow x< 4\)

Kết hợp với ĐKXĐ , ta có : \(0\le x< 4\)

KL............

\(2.\) Tương tự bài 1.

\(3a.A=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)

\(\Rightarrow A_{Max}=\dfrac{4}{3}."="\Leftrightarrow x=\dfrac{1}{4}\)

Bài 2:

a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)

\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)

\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)

b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)

30 tháng 9 2018

ĐKXĐ:\(x>0,x\ne4\)

\(M=\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{2}{\sqrt{x}}\right)\)

\(M=\left(\dfrac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\dfrac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(M=\dfrac{4\sqrt{x}}{\left(2-\sqrt{x}\right)}\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)

\(M=\dfrac{4x}{\sqrt{x}-3}\)

19 tháng 7 2018

\(1,\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z\Rightarrow\frac{4}{\sqrt{x}-3}\in Z\)

\(\Rightarrow\sqrt{x}-3\in\left(1;4;-1;-4\right)\)

\(\Rightarrow\sqrt{x}\in\left(4;7;2;-1\right)\)

\(\Rightarrow\sqrt{x}=4\Leftrightarrow x=2\)

19 tháng 7 2018

\(4,A=x+\sqrt{x}+1\)

\(A=\left(\sqrt{x}\right)^2+2.\frac{1}{2}.\sqrt{x}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)

\(A=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\Rightarrow A\ge\frac{3}{4}.\left(\sqrt{x}+\frac{1}{2}\right)^2\ge0\)

Dấu "=" xảy ra khi :

\(\sqrt{x}+\frac{1}{2}=0\Leftrightarrow\sqrt{x}=-\frac{1}{2}\)

Vậy Min A = 3/4 khi căn x = -1/2