Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b: Thay \(x=\dfrac{1}{4}\) vào P, ta được:
\(P=\left(\dfrac{1}{2}-1\right):\left(\dfrac{1}{2}+1\right)=\dfrac{-1}{2}:\dfrac{3}{2}=-\dfrac{1}{3}\)
c: Ta có: \(P< \dfrac{1}{2}\)
\(\Leftrightarrow P-\dfrac{1}{2}< 0\)
\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{1}{2}< 0\)
\(\Leftrightarrow\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{2\left(\sqrt{x}+1\right)}< 0\)
\(\Leftrightarrow\sqrt{x}< 3\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
(a) Với \(x\ge0,x\ne9\), ta có: \(A=\left(\dfrac{2}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\dfrac{2\left(\sqrt{x}+3\right)+\left(\sqrt{x}-3\right)}{x-9}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\dfrac{3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{3}{\sqrt{x}+3}.\)
(b) Ta có: \(x=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)
\(\Rightarrow\sqrt{x}=2+\sqrt{3}\).
Thay vào biểu thức \(A\) (thỏa mãn điều kiện), ta được: \(A=\dfrac{3}{2+\sqrt{3}+3}=\dfrac{3}{5+\sqrt{3}}\)
\(=\dfrac{3\left(5-\sqrt{3}\right)}{5^2-\left(\sqrt{3}\right)^2}=\dfrac{15-3\sqrt{3}}{22}.\)
(c) Để \(A=\dfrac{3}{5}\Rightarrow\dfrac{3}{\sqrt{x}+2}=\dfrac{3}{5}\)
\(\Rightarrow\sqrt{x}+2=5\Leftrightarrow x=9\) (không thỏa mãn).
Vậy: \(x\in\varnothing.\)
(d) Để \(A>1\Leftrightarrow A-1>0\Rightarrow\dfrac{3}{\sqrt{x}+3}-1>0\)
\(\Leftrightarrow\dfrac{1-\sqrt{x}}{\sqrt{x}+3}>0\Rightarrow1-\sqrt{x}>0\) (do \(\sqrt{x}+3>0\forall x\inĐKXĐ\))
\(\Rightarrow x< 1\). Kết hợp với điều kiện thì \(0\le x< 1.\)
(e) \(A\in Z\Rightarrow\dfrac{3}{\sqrt{x}+3}\in Z\Rightarrow\left(\sqrt{x}+3\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+3=1\\\sqrt{x}+3=-1\\\sqrt{x}+3=3\\\sqrt{x}+3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=-2\left(VL\right)\\\sqrt{x}=-4\left(VL\right)\\\sqrt{x}=0\Leftrightarrow x=0\left(TM\right)\\\sqrt{x}=-6\left(VL\right)\end{matrix}\right.\)
Vậy: \(x=0.\)
a) ĐKXĐ: \(x\ge0;x\ne9;x\ne4\)
\(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(M=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(M=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(M=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(M=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(M=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(M=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
b) Ta có M ϵ Z thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3+4}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3}{\sqrt{x}-3}+\dfrac{4}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)
Phải thuộc Z vậy:
4 ⋮ \(\sqrt{x}-3\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Mà: \(x\ge0,x\ne4,x\ne9\) nên \(\sqrt{x}-3\in\left\{1;2;-2;4\right\}\)
\(\Rightarrow x\in\left\{16;25;1;49\right\}\)
a, ĐK: \(x\ge0,x\ne1\)
\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\sqrt{x}+1}{x-1}\)
\(=\dfrac{x+1+2\sqrt{x}+x+1-2\sqrt{x}-3\sqrt{x}-1}{x-1}\)
\(=\dfrac{2x-3\sqrt{x}+1}{x-1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
ĐKXĐ: \(x\ge0;x\ne4\)
\(A=\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b. \(x=36\Rightarrow A=\dfrac{\sqrt{36}}{\sqrt{36}-2}=\dfrac{6}{6-2}=\dfrac{3}{2}\)
c. \(A=-\dfrac{1}{3}\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=-\dfrac{1}{3}\Rightarrow3\sqrt{x}=2-\sqrt{x}\)
\(\Rightarrow4\sqrt{x}=2\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\)
d. \(A>0\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)
e. \(A=\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}=1+\dfrac{2}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2=Ư\left(2\right)\)
\(\Rightarrow\sqrt{x}-2=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow\sqrt{x}=\left\{0;1;3;4\right\}\Rightarrow x=\left\{0;1;9;16\right\}\)
a: Ta có: \(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b: Thay x=36 vào A, ta được:
\(A=\dfrac{6}{6-2}=\dfrac{6}{4}=\dfrac{3}{2}\)
c: Để \(A=-\dfrac{1}{3}\) thì \(3\sqrt{x}=-\sqrt{x}+2\)
\(\Leftrightarrow4\sqrt{x}=2\)
hay \(x=\dfrac{1}{4}\)
1.
\(a,Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{x+5}{x-\sqrt{x}-2}\)
\(Q=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\\ Q=\dfrac{x-3\sqrt{x}+2-x-4\sqrt{x}-3-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\\ Q=\dfrac{-x-7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\\ Q=\dfrac{-\left(x+7\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\\ Q=\dfrac{-\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\dfrac{-\sqrt{x}-6}{\sqrt{x}-2}\)
\(b,Q\in Z\Leftrightarrow\dfrac{-\sqrt{x}-6}{\sqrt{x}-2}\in Z\)
\(\Leftrightarrow\dfrac{-\left(\sqrt{x}-2\right)-8}{\sqrt{x}-2}\in Z\\ \Leftrightarrow-1-\dfrac{8}{\sqrt{x}-2}\in Z\)
Mà \(-1\in Z\Leftrightarrow\dfrac{8}{\sqrt{x}-2}\in Z\)
\(\Leftrightarrow8⋮\sqrt{x}-2\\ \Leftrightarrow\sqrt{x}-2\inƯ\left(8\right)=\left\{-8,-4,-2,-1,1,2,4,8\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{-6;-2;0;1;3;4;6;10\right\}\)
Mà \(x\in Z\) và \(\sqrt{x}\ge0\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;1;4\right\}\\ \Leftrightarrow x\in\left\{0;1;4\right\}\)
Vậy \(x\in\left\{0;1;4\right\}\) thì \(Q\in Z\)
\(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\left(\text{đ}k\text{x}\text{đ}:x\ge3\right)\\ =\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\\ =\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{2\sqrt{x}-9-\left(x-9\right)-\left(2x-4\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9-2x+4\sqrt{x}-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ =\dfrac{5\sqrt{x}-3x+2}{x-5\sqrt{x}+6}\)
__
Để \(M\in Z\) thì \(x-5\sqrt{x}+6\) thuộc ước của \(5\sqrt{x}-3x+2\)
\(\Rightarrow x-5\sqrt{x}+6=-5\sqrt{x}-3x+2\\ \Leftrightarrow x-5\sqrt{x}+6+5\sqrt{x}+3x-2=0\\ \Leftrightarrow4x-4=0\\ \Leftrightarrow4x=4\\ \Leftrightarrow x=1\)
\(a,A=\dfrac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\left(x\ge0;x\ne1;x\ne9\right)\\ A=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
\(b,A\in Z\Leftrightarrow\dfrac{\sqrt{x}-3+5}{\sqrt{x}-3}\in Z\Leftrightarrow1+\dfrac{5}{\sqrt{x}-3}\in Z\\ \Leftrightarrow\sqrt{x}-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ Mà.x\ge0\\ \Leftrightarrow\sqrt{x}\in\left\{2;4;8\right\}\\ \Leftrightarrow x\in\left\{4;16;64\right\}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\\x\ne1\end{matrix}\right.\)
\(A=\dfrac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
b) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}=1+\dfrac{5}{\sqrt{x}-3}\in Z\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Kết hợp đk
\(\Rightarrow x\in\left\{4;16;64\right\}\)
a) ĐKXĐ: \(x\ge0;x\ne9\) . Rút gọn: \(A=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{\sqrt{x}-3}-\dfrac{x-4\sqrt{x}+7}{x-2\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{\sqrt{x}-3}-\dfrac{x-4\sqrt{x}+7}{x+\sqrt{x}-3\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{\sqrt{x}-3}-\dfrac{x-4\sqrt{x}+7}{\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{\sqrt{x}-3}-\dfrac{x-4\sqrt{x}+7}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)-x+4\sqrt{x}-7}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x-3\sqrt{x}-2\sqrt{x}+6+x+\sqrt{x}+3\sqrt{x}+3-x+4\sqrt{x}-7}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x+\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
A>-1\(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)>-1\(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+1>0\Leftrightarrow\dfrac{\sqrt{x}+2+\sqrt{x}-3}{\sqrt{x}-3}>0\Leftrightarrow\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2\sqrt{x}-1>0\\\sqrt{x}-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}2\sqrt{x}-1< 0\\\sqrt{x}-3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}>0,5\\\sqrt{x}>3\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}< 0,5\\\sqrt{x}< 3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0,25\\x>9\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0,25\\x< 9\end{matrix}\right.\end{matrix}\right.\Leftrightarrow}}\left[{}\begin{matrix}x>9\\0\le x< 0,25\end{matrix}\right.\)