K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2018

Đặt :

\(\dfrac{a}{d}=\dfrac{b}{e}=\dfrac{c}{f}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=dk\\b=ek\\c=fk\end{matrix}\right.\)

\(\Leftrightarrow P=\dfrac{ax+bx+c}{dx^2+ẽx+f}=\dfrac{dkx^2+ekx+fk}{dx^2+ex+f}=\dfrac{k\left(dx^2+ex+f\right)}{dx^2+ex+f}=k\)

Vậy nếu \(\dfrac{a}{d}=\dfrac{b}{e}=\dfrac{c}{f}\) thì P k phụ thuộc vào x

8 tháng 7 2018

Đặt \(\frac{a}{d}=\frac{b}{e}=\frac{c}{f}=k\)

\(\Rightarrow a=dk;b=ek;c=fk;d=ak;e=bk;f=ck\)

Thay vào P ta có:

\(P=\frac{dkx^2+ekx+fk}{dx^2+ex+f}=\frac{k.\left(dx^2+ex+f\right)}{dx^2+ex+f}=k\)

Vậy nếu \(\frac{a}{d}=\frac{b}{e}=\frac{c}{f}\)thì P không phụ thuộc vào x

8 tháng 7 2018

Nếu \(\frac{a}{d}=\frac{b}{e}=\frac{c}{f}\) thì đặt \(\frac{a}{d}=\frac{b}{e}=\frac{c}{f}=k\)

\(\Rightarrow\hept{\begin{cases}a=dk\\b=ek\\c=fk\end{cases}}\).Thế vào \(P=\frac{dk.x^2+ek.x+fk}{dx^2+ex+f}=\frac{k.dx^2+k.ex+k.f}{dx^2+ex+f}=\frac{k\left(dx^2+ex+f\right)}{dx^2+ex+f}=k\)

Vạy P không phụ thuộc vào x

12 tháng 3 2017

ta đặt \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}=k\)

suy ra: a=a'k; b=b'k; c=c'k

thay vào biểu thức P ta được:

\(\dfrac{a'kx^2+b'kx+c'k}{a'x^2+b'x+c'x}=\dfrac{k\left(a'x^2+b'x+c'\right)}{a'x^2+b'x+c'}=k\)

vậy nếu \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\) thì biểu thức P không phụ thuộc vào x

a: f(0)=5

=>a*0^2+b*0+c=5

=>c=5

f(1)=1

=>a*1+b*1+1=5

=>a+b=4

f(5)=0

=>25a+5b+1=0

=>25a+5b=-1

mà a+b=4

nên a=-21/20; b=101/20

(P): y=-21/20x^2+101/20x+5

b: f(-1)=-21/20-101/20+5=-11/10<>3

=>D ko thuộc (P)

f(1/2)=-21/20*1/4-101/20*1/2+5=177/80<>9/4

=>E ko thuộc (P)

c: y=-3

=>-21/20x^2+101/20x+8=0

=>x=6,06 hoặc x=-1,26

1 tháng 11 2018

\(\dfrac{ax^2+bx^2+c}{a1x^2+b1x^2+c1}\)= \(\dfrac{ax^2}{a1x^2}=\dfrac{bx^2}{b1x^2}=\dfrac{c}{c1}\)

=\(\dfrac{a}{a1}=\dfrac{b}{b1}=\dfrac{c}{c1}\)

\(\Rightarrow x^2\) đã bị rút gọn nên ko ảnh hưởng gì đến giá trị P

13 tháng 12 2019

v

26 tháng 10 2017

Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{e}{f}=\dfrac{a+b+c+d+e}{b+c+d+e+f}=k\)

Ta có:

\(\dfrac{a}{f}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{e}.\dfrac{e}{f}=k^5=\left(\dfrac{a+b+c+d+e}{b+c+d+e+f}\right)^5\)

27 tháng 10 2017

Đúng là góc học tập của cậu tràn trề đại số và rất ít hình học. vui

@Ngô Tấn Đạt

Nguyễn Thanh Hằng