K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2023

*Mấu chốt bài này là c/m 5 điểm M,A,I,O,B nằm trên cùng 1 đg tròn.

- Ta có: △OAM vuông tại A, △OBM vuông tại B.

\(\Rightarrow\)△OAM, △OBM nội tiếp đường tròn đường kính OM.

\(\Rightarrow\)AMBO nội tiếp đường tròn đường kính OM (1).

- Ta có AC//EF \(\Rightarrow\widehat{ACB}=\widehat{MIB}\) (2 góc so le trong).

- Trong (O) có:

\(\widehat{ACB}\) là góc nội tiếp chắn cung AB.

\(\widehat{MAB}\) là góc tạo bởi tia tiếp tuyến MA và dây cung AB.

\(\Rightarrow\widehat{ACB}=\widehat{MAB}\)

\(\Rightarrow\widehat{MAB}=\widehat{MIB}\). Do đó AIBM nội tiếp (2). (2 góc cùng nhìn 1 cạnh bằng nhau).

\(\left(1\right),\left(2\right)\Rightarrow\)A,M,B,O,I cùng nằm trên đường tròn đường kính OM.

\(\Rightarrow\)△OIM nội tiếp đường tròn đường kính OM.

\(\Rightarrow\)△OIM vuông tại I nên OI vuông góc với EF tại I.

Trong (O): EF là dây cung, OI là 1 phần đường kính, \(OI\perp EF\) tại I..

\(\Rightarrow\)I là trung điểm EF (đpcm).

 

26 tháng 1 2023

Hình vẽ:

loading...

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MFBài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.Bài 3....
Đọc tiếp

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MF

Bài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.

Bài 3. Cho đường tròn (O), hai dây AB và AC vuông góc với nhau có độ dài theo thứ tự bằng 10cm và 24cm. a) Tính khoảng cách từ tâm đến mỗi dây b) chứng minh rằng ba điểm B, O, C thẳng hàng.

Bài 4. Cho đường tròn (O), hai dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Trên tia đối của tia AB lấy điểm E sao cho AE = BM. Trên tia đối của tia CD lấy điểm F sao cho CF = DM. Chứng minh rằng OE = OF.

Bài 5. Cho đường tròn (O), hai dây AB và CD có AB > CD, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. So sánh các độ dài MH và MK. 

giải giúp mình vs ạ . tạo mình đang cần gấp . cảm ơn nha

 

0
3 tháng 7 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

2 tháng 2 2019

Xét tam giác COD có:

OC=OD=CD=R

=> tam giác COD là tam giác đều

=> góc COD=60 độ (t/c tam giác đều)

Mà cung CD= góc COD= 60 độ ( góc COD là góc ở tâm chắn cung CD)

=> sđ cung CD= 60 độ

* Xét trường hợp điểm D gần điểm B 

=> D thuộc cung BC

=> sđ cung BC= sđ cung CD= sđ cung BD (1)

Ta lại có điểm C là điểm nằm chính giữa cung AB (gt)

=> sđ cung AC= sđ cung BC= sđ cung AB/2= 180 độ/2= 90 độ

Thay vào (1) ta có:

90 độ= 60 độ+ sđ cung BD

=> sđ cung BD= 90 độ - 60 độ= 30 độ

* Xét trường hợp điểm D nằm gần điểm A 

=> C thuộc cung BD

=> sđ cung BD= sđ cung BC+ sđ cung CD

=> sđ cung BD= 90 độ + 60 độ= 150 độ

5 tháng 6 2018

3, ta có: góc MFA = \(\frac{1}{2}\).(sđ cung AM + sđ cung BQ)   (góc có đỉnh nằm trong đường tròn )

và góc MPQ = \(\frac{1}{2}\).sđ cung MQ = \(\frac{1}{2}\).. (sđ cung MB + sđ cung BQ ) (góc nội tiếp)

mà sđ cung AM = sđ cung MB (do M là điểm chính giữa cung AB )

=> góc MFA = góc MPQ

=> góc ngoài MFA tại hai đỉnh có hai góc đối nhau bằng nhau thì tứ giác EFQP là tứ giác nội tiếp hay E,F,P,Q cùng thuộc 1 đường tròn (đpcm)