Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Mấu chốt bài này là c/m 5 điểm M,A,I,O,B nằm trên cùng 1 đg tròn.
- Ta có: △OAM vuông tại A, △OBM vuông tại B.
\(\Rightarrow\)△OAM, △OBM nội tiếp đường tròn đường kính OM.
\(\Rightarrow\)AMBO nội tiếp đường tròn đường kính OM (1).
- Ta có AC//EF \(\Rightarrow\widehat{ACB}=\widehat{MIB}\) (2 góc so le trong).
- Trong (O) có:
\(\widehat{ACB}\) là góc nội tiếp chắn cung AB.
\(\widehat{MAB}\) là góc tạo bởi tia tiếp tuyến MA và dây cung AB.
\(\Rightarrow\widehat{ACB}=\widehat{MAB}\)
\(\Rightarrow\widehat{MAB}=\widehat{MIB}\). Do đó AIBM nội tiếp (2). (2 góc cùng nhìn 1 cạnh bằng nhau).
\(\left(1\right),\left(2\right)\Rightarrow\)A,M,B,O,I cùng nằm trên đường tròn đường kính OM.
\(\Rightarrow\)△OIM nội tiếp đường tròn đường kính OM.
\(\Rightarrow\)△OIM vuông tại I nên OI vuông góc với EF tại I.
Trong (O): EF là dây cung, OI là 1 phần đường kính, \(OI\perp EF\) tại I..
\(\Rightarrow\)I là trung điểm EF (đpcm).
Xét tam giác COD có:
OC=OD=CD=R
=> tam giác COD là tam giác đều
=> góc COD=60 độ (t/c tam giác đều)
Mà cung CD= góc COD= 60 độ ( góc COD là góc ở tâm chắn cung CD)
=> sđ cung CD= 60 độ
* Xét trường hợp điểm D gần điểm B
=> D thuộc cung BC
=> sđ cung BC= sđ cung CD= sđ cung BD (1)
Ta lại có điểm C là điểm nằm chính giữa cung AB (gt)
=> sđ cung AC= sđ cung BC= sđ cung AB/2= 180 độ/2= 90 độ
Thay vào (1) ta có:
90 độ= 60 độ+ sđ cung BD
=> sđ cung BD= 90 độ - 60 độ= 30 độ
* Xét trường hợp điểm D nằm gần điểm A
=> C thuộc cung BD
=> sđ cung BD= sđ cung BC+ sđ cung CD
=> sđ cung BD= 90 độ + 60 độ= 150 độ
3, ta có: góc MFA = \(\frac{1}{2}\).(sđ cung AM + sđ cung BQ) (góc có đỉnh nằm trong đường tròn )
và góc MPQ = \(\frac{1}{2}\).sđ cung MQ = \(\frac{1}{2}\).. (sđ cung MB + sđ cung BQ ) (góc nội tiếp)
mà sđ cung AM = sđ cung MB (do M là điểm chính giữa cung AB )
=> góc MFA = góc MPQ
=> góc ngoài MFA tại hai đỉnh có hai góc đối nhau bằng nhau thì tứ giác EFQP là tứ giác nội tiếp hay E,F,P,Q cùng thuộc 1 đường tròn (đpcm)
https://olm.vn/hoi-dap/detail/209918170486.html?pos=471764962964