Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B O M C D E F H G
1) Vì ^AEB chắn nửa đường tròn (O) nên EA vuông góc EB. Do đó BE // CM.
Suy ra tứ giác BECM là hình thang cân (Vì 4 điểm B,C,M,E cùng thuộc (O))
Kết hợp với M là điểm chính giữa cung AB suy ra CE = BM = AM hay (CE = (AM
Vậy thì tứ giác ACEM là hình thang cân (đpcm).
2) Đường tròn (O) có M là điểm chính giữa cung AB, suy ra MO vuông góc AB
Từ đó MO // CH suy ra ^HCM = ^OMC = ^OCM. Vậy CM là phân giác của ^HCO (đpcm).
3) Kẻ đường kính MG của đường tròn (O). Dễ thấy ^DOG = ^DCG (= 900)
Suy ra 4 điểm C,D,O,G cùng thuộc đường tròn đường kính DG
Mặt khác AB là trung trực của MG, D thuộc AB nên DG = DM
Theo mối quan hệ giữa đường kính và dây ta có:
\(CD\le DG=DM\Leftrightarrow2CD\le DM+CD=CM\Leftrightarrow CD\le\frac{1}{2}CM\)
Lại có tứ giác ACEM là hình thang cân, do vậy \(CD\le\frac{1}{2}CM=\frac{1}{2}AE\)(đpcm).
Dấu "=" xảy ra khi và chỉ khi C là điểm chính giữa cung AB không chứa M của (O).
a. Xét (O) , có
CD \(\perp\)AB = {I}
=> \(\widehat{CIB}=90^o\Rightarrow\widehat{FIB}=90^o\)
Có: \(\widehat{AEB}\)là góc nội tiếp chắn nửa đường tròn đường kính AB
\(\Rightarrow\widehat{AEB}=90^o\Rightarrow\widehat{IEB}=90^o\)
Xét tứ giác EFIB, có:
\(\widehat{FEB}+\widehat{FIB}=90^o+90^o=180^o\)
2 góc \(\widehat{FEB}\)và \(\widehat{FIB}\)là 2 góc đối nhau
=> EFIB là tứ giác nội tiếp (dhnb) (đpcm)
a) Vì \(OC\perp AB\Rightarrow\widehat{O}=90^o\)
Xét \(\left(O;\frac{AB}{2}\right)\):
\(\Delta ABM\)nt nửa đường tròn, có AB là đường kính
\(\Rightarrow\Delta ABM\)vuông tại M\(\Rightarrow\widehat{AMB}=90^o\)
Xét \(\Delta ANO\)và \(\Delta ABM\)có:
\(\widehat{BAM}\)chung
\(\widehat{AON}=\widehat{AMB}=90^o\)
\(\Rightarrow\Delta ANO\infty\Delta ABM\left(gg\right)\)\(\Rightarrow\frac{AN}{AB}=\frac{AO}{AM}\Rightarrow AN.AM=AO.AB=OA.2OA=2OA^2\)
Vì OA là bán kính của nửa đường tròn nên tích AN.AM ko đổi
b) Xét tg MNOB có \(\widehat{NMB}+\widehat{BON}=90^o+90^o=180^o\).Mà 2 góc ở vị trí đối nhau
\(\Rightarrow Tg\)MNOB là tg nt
Vì \(CD\perp AM\Rightarrow\widehat{D}=90^o\)
Xét tg AODC có: \(\widehat{AOC}=\widehat{CDA}=90^o\).Mà O và D là 2 đỉnh kề nhau nhìn cạnh AC dưới 1gocs 90 độ
\(\Rightarrow\)AODC là tg nt
c) \(\Delta COD\)cân tại D \(\Rightarrow\widehat{DCO}=\widehat{DOC}\)và CD =OD
Do AODC là tg nt \(\Rightarrow\widehat{DOC}=\widehat{DAO}\)(2 góc nt cùng chắn cung OD) và \(\widehat{DOC}=\widehat{DAC}\)(2 góc nt chắn cung CD)
Suy ra \(\widehat{DAC}=\widehat{DAO}\)
Mà \(\widehat{DAC}\)là góc nt chắn cung CM; \(\widehat{DAO}\)là góc nt chắn cung BM
\(\Rightarrow sđ\widebat{CM=sđ\widebat{BM}\Rightarrow}\)M là điểm chính giữa cung BC (vì M \(\in\)BC)
Vậy \(\Delta DOC\)cân tại D thì M là điểm chính giữa cung BC
Hình tự vẽ:
Ta có \(\widehat{MCE}=\frac{1}{2}sđ\widebat{MD}=\frac{1}{2}\left(sđ\widebat{MB}+sđ\widebat{BD}\right)\)
\(\widehat{CEM}=\frac{1}{2}\left(sđ\widebat{CM}+sđ\widebat{AD}\right)=\frac{1}{2}\left(sđ\widebat{BM}+sđ\widebat{BD}\right)\)
\(\Rightarrow\widehat{MCE}=\widehat{CEM}\)
Xét tam giác ECM có \(\widehat{MCE}=\widehat{CEM}\left(cmt\right)\)
\(\Rightarrow\Delta ECM\)cân tại M