Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo tính chất hai tiếp tuyến cắt nhau ta có IA = IB = IC.
Do đó tam giác ABC vuông tại A.
Lại có \(IO_1\perp AB;IO_2\perp AC\) nên tam giác \(IO_1O_2\) vuông tại I.
b) Đầu tiên ta chứng minh kết quả sau: Cho hai đường tròn (D; R), (E; r) tiếp xúc với nhau tại A. Tiếp tuyến chung BC (B thuộc (D), C thuộc (E)). Khi đó \(BC=2\sqrt{Rr}\).
Thật vậy, kẻ EH vuông góc với BD tại H. Ta có \(DH=\left|R-r\right|;DE=R+r\) nên \(BC=EH=\sqrt{DE^2-DH^2}=2\sqrt{Rr}\).
Trở lại bài toán: Giả sử (O; R) tiếp xúc với BC tại M.
Theo kết quả trên ta có \(BM=2\sqrt{R_1R};CM=2\sqrt{RR_2};BC=2\sqrt{R_1R_2}\).
Do \(BM+CM=BC\Rightarrow\sqrt{R_1R}+\sqrt{R_2R}=\sqrt{R_1R_2}\Rightarrow\dfrac{1}{\sqrt{R}}=\dfrac{1}{\sqrt{R_1}}+\dfrac{1}{\sqrt{R_2}}\).
P/s: Hình như bạn nhầm đề
( Mình sẽ làm tắt nha bạn, mấy chỗ đấy nó dễ rùi nếu ko hiểu thì cmt nhé )
a) Ta có: \(O_1B//O_2C\)( cùng vuông góc với BC )
\(\Rightarrow\widehat{BO_1A}+\widehat{CO_2A}=180^0\)
\(\Leftrightarrow\left(180^0-2\widehat{BAO_1}\right)+\left(180^0-2\widehat{CAO_2}\right)=180^0\)
\(\Leftrightarrow2\left(\widehat{BAO_1}+\widehat{CAO_2}\right)=180^0\)
\(\Leftrightarrow\widehat{BAO_1}+\widehat{CAO_2}=90^0\)
\(\Rightarrow\widehat{BAC}=90^0\)
=> tam giác ABC vuông tại A
b) \(\widehat{O_1BA}+\widehat{MBA}=\widehat{O_1AB}+\widehat{BAM}=90^0\)
\(\Rightarrow\widehat{O_1AM}=90^0\)
\(\Rightarrow AM\perp AO_1\)
=> AM là tiếp tuyến của \(\left(O_1\right)\)
CMTT : AM là tiếp tuyến của \(\left(O_2\right)\)
=> AM là tiếp tuyến chung của \(\left(O_1\right);\left(O_2\right)\)
+) Ta có: \(\hept{\begin{cases}\widehat{BMO_1}=\widehat{AMO_1}\\\widehat{CMO_2}=\widehat{AMO_2}\end{cases}}\)
Ta có; \(\widehat{BMO_1}+\widehat{AMO_1}+\widehat{CMO_2}+\widehat{AMO_2}=180^0\)
\(\Leftrightarrow2\left(\widehat{O_1AM}+\widehat{AMO_2}\right)=180^0\)
\(\Leftrightarrow\widehat{O_1AM}+\widehat{AMO_2}=90^0\)
\(\Leftrightarrow\widehat{O_1MO_2}=90^0\)
\(\Rightarrow O_1M\perp O_2M\)
d) Ta có: \(\widehat{O_1BA}=\widehat{O_1AB}=\widehat{O_2AD}=\widehat{O_2DA}\)
\(\widehat{\Rightarrow O_1BA}=\widehat{O_2DA}\)mà 2 góc này ở vị trí so le trong
\(\Rightarrow O_1B//O_2D\)
\(\Rightarrow\frac{AB}{AD}=\frac{AO_1}{AO_2}\left(1\right)\)
CMTT \(\Rightarrow\frac{AE}{AC}=\frac{AO_1}{AO_2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{AB}{AD}=\frac{AE}{AC}\)
\(\Rightarrow AB.AC=AD.AE\)
\(\Rightarrow\frac{1}{2}AB.AC=\frac{1}{2}AD.AE\)
\(\Rightarrow S_{\Delta ADE}=S_{\Delta ABC}\)
Ban co de hsg Hai Phong nam 2019-2020 ko cho mik xin voi
a) dung phuong h
b) Ap dung cau a va bien doi mot chut
c) chua nghi ra
A B C I O O'
1/ Ta có
IB=IA=IC (Hai tiếp tuyến cùng xp từ 1 điểm thì kc từ điểm đó đến hai tiếp điểm bằng nhau
=> tg IAB và tg IAC cân tại I \(\Rightarrow\widehat{IBA}=\widehat{IAB}\) và \(\widehat{ICA}=\widehat{IAC}\)
Xét tg IAB có \(\widehat{AIB}=180^o-\left(\widehat{IBA}+\widehat{IAB}\right)=180^o-2.\widehat{IAB}\) (1)
Xét tg IAC có \(\widehat{AIC}=180^o-\left(\widehat{IAC}+\widehat{ICA}\right)=180^o-2.\widehat{IAC}\) (2)
Công 2 vế của (1) và (2)
\(\Rightarrow\widehat{AIB}+\widehat{AIC}=360^o-2\left(\widehat{IAB}+\widehat{IAC}\right)\)
\(\Rightarrow\widehat{BIC}=180^o=360^o-2\widehat{BAC}\Rightarrow\widehat{BAC}=90^o\) => tg ABC vuông tại A
2/
Ta có
tg AIB cân tại I (cmt)
\(OI\perp AB\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm đường tròn vuông góc và chia đôi dây cung nối hai tiếp điểm)
=> IO là phân giác của \(\widehat{AIB}\Rightarrow\widehat{AIO}=\widehat{BIO}=\frac{\widehat{AIB}}{2}\) (trong tg cân đường cao xp từ đỉnh đồng thời là đường phân giác)
C/m tương tự ta cũng có \(\widehat{AIO'}=\widehat{CIO'}=\frac{\widehat{AIC}}{2}\)
\(\Rightarrow\widehat{AIO}+\widehat{AIO'}=\widehat{OIO'}=\frac{\widehat{AIB}+\widehat{AIC}}{2}=\frac{180^o}{2}=90^o\) => tg OIO' vuông tại I
3/
Hai đường tròn tiếp xúc ngoài thì đường nối tâm hai đường tròn đi qua điểm tiếp xúc => O, A, O' thẳng hàng
Xét tg vuông OIO' có
\(IA^2=OA.O'A\) (trong tg vuông bình phương đường cao từ đỉnh góc vuông bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền) \(\Rightarrow IA=\sqrt{OA.OA'}=\sqrt{R.R'}\)
Ta có IB=IA=IC (cmt) => \(IA=\frac{BC}{2}\Rightarrow BC=2.IA=2\sqrt{R.R'}\)
a)AD tính chất 2 tiếp tuyến cắt nhau
b)BC=2*căn(R1*R2)