K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2017

a, Ta có AB = AE + BE = EM + EN

Và CD = FD + FC = NF + NE

=> AB + CD = 2EF => AB = EF

b, Ta có EM = AB – EB = EF – EN = NF

25 tháng 5 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

MA và MB là các tiếp tuyến của (O) (gt).

Theo tính chất của hai tiếp tuyến cắt nhau, ta có:

MA = MB

MO là tia phân giác của góc AMB

ΔAMB cân tại M (MA = MB) mà có MO là đường phân giác nên đồng thời là đường cao

=> MO ⊥ AB hay ∠MEA = 90o

Tương tự ta có MO' là tia phân giác của góc AMC và ∠MFA = 90o

MO, MO' là tia phân giác của hai góc kề bù ∠AMB và ∠AMC nên ∠EMF = 90o

=> Tứ giác AEMF là hình chữ nhật (vì có ba góc vuông).

11 tháng 12 2023

a: Xét (O) có

MB,MA là các tiếp tuyến

Do đó: MB=MA

Xét (O') có

MA,MC là các tiếp tuyến

Do đó: MA=MC

Ta có: MB=MA

MA=MC

Do đó:MB=MC

=>M là trung điểm của BC

Xét ΔABC có

AM là đường trung tuyến

\(AM=\dfrac{BC}{2}\left(=BM\right)\)

Do đó: ΔABC vuông tại A

b: ta có: MB=MA

=>M nằm trên đường trung trực của AB(1)

Ta có: OB=OA

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại E

ta có: MA=MC

=>M nằm trên đường trung trực của AC(3)

ta có: O'A=O'C

=>O' nằm trên đường trung trực của AC(4)

từ (3) và (4) suy ra MO' là trung trực của AC

=>MO'\(\perp\)AC tại F

Xét tứ giác AEMF có

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

=>AEMF là hình chữ nhật