K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2023

a: Xét (O) có

MA,MC là các tiếp tuyến

Do đó: MA=MC

=>M nằm trên đường trung trực của AC(1)

Ta có: OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra MO là đường trung trực của AC

=>MO\(\perp\)AC tại H và H là trung điểm của AC

Xét (O) có

NC,NB là các tiếp tuyến

Do đó:NC=NB

=>N nằm trên đường trung trực của CB(3)

Ta có: OC=OB

=>O nằm trên đường trung trực của CB(4)

Từ (3) và (4) suy ra ON là đường trung trực của CB

=>ON\(\perp\)CB tại K và K là trung điểm của CB

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét tứ giác CHOK có

\(\widehat{CHO}=\widehat{CKO}=\widehat{KCH}=90^0\)

=>CHOK là hình chữ nhật

b: Ta có: \(\widehat{CAO}+\widehat{HOA}=90^0\)(ΔOHA vuông tại H)

\(\widehat{CAO}+\widehat{MAC}=\widehat{MAO}=90^0\)

Do đó: \(\widehat{HOA}=\widehat{MAC}=90^0-\widehat{CAO}=60^0\)

Xét ΔMOA vuông tại A có \(tanMOA=\dfrac{MA}{AO}\)

=>\(\dfrac{MA}{6}=tan60=\sqrt{3}\)

=>\(MA=6\sqrt{3}\left(cm\right)\)

c: Ta có: CHOK là hình chữ nhật

=>\(\widehat{HOK}=90^0\)

=>\(\widehat{MON}=90^0\)

Xét ΔMON vuông tại O có OC là đường cao

nên \(CM\cdot CN=OC^2\)

mà CM=MA và CN=NB

nên \(AM\cdot BN=OC^2=R^2\) không đổi

23 tháng 9 2019

bạn học đến đg tròn rồi à

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái

8 tháng 2 2018

a) \(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn nên \(\widehat{ACB}=90^o\). Vậy tam giác ABC vuông tại C.

Xét tam giác vuông PAB có đường cao AC, áo dụng hệ thức lượng trong tam giác ta có:

\(PA^2=PC.PB\)

b) Áp dụng tính chất hai tiếp tuyến cắt nhau, ta có PA = PM

Lại có OA = OM nên PO là trung trực của AM.

c) Ta có \(\widehat{CBA}=30^o\Rightarrow\widehat{CAB}=60^o\) hay tam giác CAO đều. Suy ra AC = R

Xét tam giác vuông PAB có đường cao AC, áo dụng hệ thức lượng trong tam giác ta có:

\(\frac{1}{AC^2}=\frac{1}{AP^2}+\frac{1}{AB^2}\Rightarrow\frac{1}{R^2}=\frac{1}{AP^2}+\frac{1}{4R^2}\)

\(\Rightarrow AP=\frac{2R}{\sqrt{3}}\)

\(\Rightarrow PO=\sqrt{PA^2+AO^2}=\frac{\sqrt{21}R}{3}\)

Xét tam giác vuông PAO, đường cao AN, áo dụng hệ thức lượng ta có:

\(\frac{1}{AN^2}=\frac{1}{PA^2}+\frac{1}{AO^2}\Rightarrow AN=\frac{2\sqrt{7}R}{7}\)

\(\Rightarrow AM=2AN=\frac{4\sqrt{7}}{7}R\)

d) Kéo dài MB cắt AP tại E.

Ta thấy ngay tam giác EMA vuông có PM = PA nên PA = PE

Do MH // AE nên áo dụng định lý Ta let ta có:

\(\frac{HI}{AP}=\frac{IB}{PB}=\frac{MI}{EP}\)

Do AP = EP nên MI = HI

Ta cũng có N là trung điểm AM nên NI là đường trung bình tam giác AMH.

\(\Rightarrow NI=\frac{AH}{2}\)

Xét tam giác vuông AMB, đường cao MH, áp dụng hệ thức lượng ta có:

\(AH.AB=AM^2\Rightarrow AH=\frac{8}{7}R\)

\(\Rightarrow NI=\frac{4}{7}R\)

25 tháng 12 2023

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC và AO là phân giác của góc BAC

Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔBOA vuông tại B có \(cosBOA=\dfrac{BO}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BOA}=60^0\)

Xét ΔBOA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2\)

=>\(OH\cdot2R=R^2\)

=>\(OH=\dfrac{R^2}{2R}=\dfrac{R}{2}\)

b: Ta có: \(\widehat{ABM}+\widehat{OBM}=\widehat{OBA}=90^0\)

\(\widehat{HBM}+\widehat{OMB}=90^0\)(ΔHMB vuông tại H)

mà \(\widehat{OBM}=\widehat{OMB}\)

nên \(\widehat{ABM}=\widehat{HBM}\)

=>BM là phân giác của góc ABH

Xét ΔABC có

BM,AM là các đường phân giác

BM cắt AM tại M

Do đó: M là tâm đường tròn nội tiếp ΔABC

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
Giải giúp mình các bài này với ạ!1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = ACa. CM : Tam giác OAB = tam giác OACb. CM : AC là tiếp tuyến của đường tròn tâm Oc. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không...
Đọc tiếp

Giải giúp mình các bài này với ạ!

1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm

2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O

3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.

0