Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình giải thử ra đây sau bạn tự vẽ hình kiểm tra lại cho mình nha
(+) Mục tiêu đi tính BMC
Kẻ MH vg AB ; MK vg AC ; MI vuông góc với BC
Dễ thấy BAC = 1/2 sdBC= 148 / 2 = 74 độ
tg MHAK có H + K + A + HMK = 360 độ
=> 90 + 90 + 74 + HMK = 360 độ
=> HMK = 106 độ
=> BMC = 1/2 HMK = 53 độ
![](https://rs.olm.vn/images/avt/0.png?1311)
TK:
a.
xét tứ giác BDMI ta có : IMD = 90 (CD ⊥ MI)
IBD = 90 (BD là tiếp tuyến)
mà 2 góc này ở vị trí đối nhau ⇒tứ giác BDMI là tứ giác nội tiếp
⇒ DMB = DIB (2 góc nội tiếp cùng chắng cung DB của tứ giác BDMI) (1)
xét tứ giác ACMI ta có : IAC = 90 (AC là tiếp tuyến)
IMC = 90 (CD ⊥ MI)
mà 2 góc này ở vị trí đối nhau ⇒⇒ tứ giác ACMI là tứ giác nội tiếp
⇒ CMA = CIA (2 góc nội tiếp cung chắng cung AC của tứ giác ACMI) (2)
mà CMA + DMB = 90 (góc AMB là góc nội tiếp chắng nửa (o)) (3)
tứ (1) ; (2) và (3) ta có : CIA + DIB = 90
⇒ CID = 180 - 90 = 90
xét tứ giác MIEF ta có : AMB = 90 (góc nội tiếp chắng nửa (o))
CID = 90 (chứng minh trên)
mà 2 góc này ở vị trí đối nhau ⇒ tứ giác MIEF là tứ giác nội tiếp (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án C.