K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái

b: Xét (O) có 

ΔBAC nội tiếp đường tròn

AB là đường kính

Do đó: ΔBAC vuông tại C

Xét (O) có

OE là một phần đường kính

BC là dây

E là trung điểm của BC

Do đó: OE\(\perp\)BC

c: Xét ΔDEC vuông tại E và ΔDEB vuông tại E có 

DE chung

CE=BE

Do đó: ΔDEC=ΔDEB

Suy ra: DC=DB

Xét ΔOBD và ΔOCD có 

OB=OC

OD chung

DB=DC

Do đó: ΔOBD=ΔOCD

Suy ra: \(\widehat{OBD}=\widehat{OCD}\)

\(\Leftrightarrow\widehat{OBD}=90^0\)

hay DB là tiếp tuyến có B là tiếp điểm của (O)

b: Xét (O) có 

ΔBAC nội tiếp đường tròn

AB là đường kính

Do đó: ΔBAC vuông tại C

Xét (O) có 

OE là một phần đường kính

BC là dây

E là trung điểm của BC

Do đó: OE\(\perp\)BC tại E

c: Xét ΔDEC vuông tại E và ΔDEB vuông tại E có 

DE chung

CE=BE

Do đó: ΔDEC=ΔDEB

Suy ra: DC=DB

Xét ΔOCD và ΔOBD có 

OC=OB

DC=DB

OD chung

Do đó: ΔOCD=ΔOBD

Suy ra: \(\widehat{OCD}=\widehat{OBD}\)

\(\Leftrightarrow\widehat{OCD}=90^0\)

hay DB là tiếp tuyến của (O)

b: Xét (O) có 

ΔABC nội tiếp đường tròn

AB là đường kính

Do đó: ΔABC vuông tại C

Xét ΔABC có 

O là trung điểm của AB

E là trung điểm của BC

Do đó: OE là đường trung bình của ΔBAC

Suy ra: OE\(\perp\)CB

29 tháng 8 2021
a) Vẽ hình

a) Xét đường tròn (O) có AB  là đường kính và △ ABC nội tiếp đường tròn (O)

⇒ \(\widehat{ACB}=90^0\) hay △ ABC vuông tại C.

Có: OC = OB (do cùng bằng bán kính), suy ra O cách đều hai điểm C và B,

⇒  O nằm trên trung trực của BC.

Có EC = EB (do E là trung điểm của BC), suy ra E cách đều hai điểm B và C

⇒ E nằm trên trung trực của BC.

Ta có E và O  đều nằm trên đường trung trực của đoạn BC

⇒ OE là trung trực của đoạn BC.

 OE ⊥ BC (đpcm)

b)  Vì tiếp tuyến tại C của (O) cắt OE  ở D nên ta có D nằm trên EO, suy ra D nằm trên đường trung trực của BC ⇒ DB = DC (tính chất đường trung trực)

Xét ΔCOD và ΔBOD có:

OC = OB (do cùng là bán kính của đường tròn)

OD chung

DB = DC (cmt)

⇒ ΔCOD = ΔBOD ( c − c − c )

\(\widehat{OCD}=\widehat{OBD}=90^0\)

⇒  BD ⊥ OB

Suy ra DB  là tiếp tuyến của (O)  (đpcm).

c)Vì DB  là tiếp tuyến của (O) (cmt) 

  \(\widehat{OBD}=90^0\)       ⇒          \(\widehat{CBO}+\widehat{CBD}=90^0\)       \(\left(1\right)\)

Vì OD  là trung trực của BC (cmt) 

⇒ OD ⊥ BC ⇒ \(\widehat{DEB}=90^0\)\(\widehat{ODB}+\widehat{CBD}=90^0\)     \(\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) \(\widehat{CBO}=\widehat{ODB}\) ( cùng phụ với \(\widehat{DBC}\) )

Xét △ ODB và △ CBH có:

\(\widehat{CHB}=\widehat{OBD}=90^0\)

\(\widehat{CBO}=\widehat{ODB}\) ( cmt )

△ ODB \(\approx\) △ CBH ( g − g )

\(\dfrac{OB}{CH}=\dfrac{OD}{BC}\)

⇒  OB .  BC = OD . CH

△ ODB ∼ △ CBH ( g − g )

Mà có OB = OC (do cùng là bán kính của đường tròn)

Suy ra: CB.OC=OD.HC (đpcm)