Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại link dưới đây nhé.
Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath
b: Xét (O) có
ΔBAC nội tiếp đường tròn
AB là đường kính
Do đó: ΔBAC vuông tại C
Xét (O) có
OE là một phần đường kính
BC là dây
E là trung điểm của BC
Do đó: OE\(\perp\)BC
c: Xét ΔDEC vuông tại E và ΔDEB vuông tại E có
DE chung
CE=BE
Do đó: ΔDEC=ΔDEB
Suy ra: DC=DB
Xét ΔOBD và ΔOCD có
OB=OC
OD chung
DB=DC
Do đó: ΔOBD=ΔOCD
Suy ra: \(\widehat{OBD}=\widehat{OCD}\)
\(\Leftrightarrow\widehat{OBD}=90^0\)
hay DB là tiếp tuyến có B là tiếp điểm của (O)
b: Xét (O) có
ΔBAC nội tiếp đường tròn
AB là đường kính
Do đó: ΔBAC vuông tại C
Xét (O) có
OE là một phần đường kính
BC là dây
E là trung điểm của BC
Do đó: OE\(\perp\)BC tại E
c: Xét ΔDEC vuông tại E và ΔDEB vuông tại E có
DE chung
CE=BE
Do đó: ΔDEC=ΔDEB
Suy ra: DC=DB
Xét ΔOCD và ΔOBD có
OC=OB
DC=DB
OD chung
Do đó: ΔOCD=ΔOBD
Suy ra: \(\widehat{OCD}=\widehat{OBD}\)
\(\Leftrightarrow\widehat{OCD}=90^0\)
hay DB là tiếp tuyến của (O)
b: Xét (O) có
ΔABC nội tiếp đường tròn
AB là đường kính
Do đó: ΔABC vuông tại C
Xét ΔABC có
O là trung điểm của AB
E là trung điểm của BC
Do đó: OE là đường trung bình của ΔBAC
Suy ra: OE\(\perp\)CB
a) Xét đường tròn (O) có AB là đường kính và △ ABC nội tiếp đường tròn (O)
⇒ \(\widehat{ACB}=90^0\) hay △ ABC vuông tại C.
Có: OC = OB (do cùng bằng bán kính), suy ra O cách đều hai điểm C và B,
⇒ O nằm trên trung trực của BC.
Có EC = EB (do E là trung điểm của BC), suy ra E cách đều hai điểm B và C
⇒ E nằm trên trung trực của BC.
Ta có E và O đều nằm trên đường trung trực của đoạn BC
⇒ OE là trung trực của đoạn BC.
⇒ OE ⊥ BC (đpcm)
b) Vì tiếp tuyến tại C của (O) cắt OE ở D nên ta có D nằm trên EO, suy ra D nằm trên đường trung trực của BC ⇒ DB = DC (tính chất đường trung trực)
Xét ΔCOD và ΔBOD có:
OC = OB (do cùng là bán kính của đường tròn)
OD chung
DB = DC (cmt)
⇒ ΔCOD = ΔBOD ( c − c − c )
⇒ \(\widehat{OCD}=\widehat{OBD}=90^0\)
⇒ BD ⊥ OB
Suy ra DB là tiếp tuyến của (O) (đpcm).
c)Vì DB là tiếp tuyến của (O) (cmt)
⇒ \(\widehat{OBD}=90^0\) ⇒ \(\widehat{CBO}+\widehat{CBD}=90^0\) \(\left(1\right)\)
Vì OD là trung trực của BC (cmt)
⇒ OD ⊥ BC ⇒ \(\widehat{DEB}=90^0\)⇒ \(\widehat{ODB}+\widehat{CBD}=90^0\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ⇒ \(\widehat{CBO}=\widehat{ODB}\) ( cùng phụ với \(\widehat{DBC}\) )
Xét △ ODB và △ CBH có:
\(\widehat{CHB}=\widehat{OBD}=90^0\)
\(\widehat{CBO}=\widehat{ODB}\) ( cmt )
⇒ △ ODB \(\approx\) △ CBH ( g − g )
⇒ \(\dfrac{OB}{CH}=\dfrac{OD}{BC}\)
⇒ OB . BC = OD . CH
⇒ △ ODB ∼ △ CBH ( g − g )
Mà có OB = OC (do cùng là bán kính của đường tròn)
Suy ra: CB.OC=OD.HC (đpcm)