K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2017

Có cách dán ảnh rồi nè

17 tháng 4 2017

Giải:

a) Ta có OM, ON lần lượt là tia phân giác cả AOP và BOP

Mà AOP kể bù BOP nên suy ra OM vuông góc với ON.

Vậy ∆MON vuông tại O.

Lại có ∆APB vuông vì có góc vuông (góc nội tiếp chắn nửa cung tròn)

Tứ giác AOPM nội tiếp đường tròn vì có + = 2v. Nên = (cùng chắn cung OP).

Vậy hai tam giác vuông MON à APB đồng dạng vị có cắp góc nhọn bằng nhau.

b)

Tam giác AM = MP, BN = NP (1) (tính chất hai tiếp tuyến cắt nhau)

Tam giác vuông MON có OP là đường cao nên:

MN.PN = OP2 (2)

Từ 1 và 2 suy ra AM.BN = OP2 = R2

c) Từ tam giác MON đồng dạng với tam giác APB ta có :

Khi AM = thi do AM.BN = R2 suy ra BN = 2R

Do đó MN = MP + PN = AM + BN = + 2R =

Suy ra MN2 =

Vậy =

d) Nửa hình tròn APB quay quanh bán kính AB = 2R sinh ra một hình cầu có bán kính R.

Vậy V = πR3

Theo tính chất hai tiếp tuyến cắt nhau ta có

a) ^COD=^O22 +^O32 =12 (^O1+^O2+^O3+^O4)=12 .180=90.

b) CD = CM + MD = CA + DB.

c) AC.BD=MC.MD=OM2AC.BD=MC.MD=OM2 (cố định).

22 tháng 8 2021

Theo tính chất hai tiếp tuyến cắt nhau ta có

a) ^COD=^O22 +^O32 =12 (^O1+^O2+^O3+^O4)=12 .180=90.

b) CD = CM + MD = CA + DB.

c) AC.BD=MC.MD=OM2AC.BD=MC.MD=OM2 (cố định).

26 tháng 3 2018

a) Do C thuộc nửa đường tròn nên \(\widehat{ACB}=90^o\) hay AC vuông góc MB.

Xét tam giác vuông AMB có đường cao AC nên áp dụng hệ thức lượng ta có:

\(BC.BM=AB^2=4R^2\)

b) Xét tam giác MAC vuông tại C có CI là trung tuyến ứng với cạnh huyền nên IM = IC = IA

Vậy thì \(\Delta ICO=\Delta IAO\left(c-c-c\right)\)

\(\Rightarrow\widehat{ICO}=\widehat{IAO}=90^o\)

Hay IC là tiếp tuyến tại C của nửa đường tròn.

c) Xét tam giác vuông AMB có đường cao AC, áp dụng hệ thức lượng ta có:

\(MB.MC=MA^2=4IC^2\Rightarrow IC^2=\frac{1}{4}MB.MC\)

Xét tam giác AMB có I là trung điểm AM, O là trung điểm AB nên IO là đường trung bình tam giác ABM.

Vậy thì \(MB=2OI\Rightarrow MB^2=4OI^2\)   (1) 

Xét tam giác vuông MAB, theo Pi-ta-go ta có:

\(MB^2=MA^2+AB^2=MA^2+4R^2\)   (2)

Từ (1) và (2) suy ra \(4OI^2=MA^2+4R^2.\)

d) Do IA, IC là các tiếp tuyến cắt nhau nên ta có ngay \(AC\perp IO\Rightarrow\widehat{CDO}=90^o\)

Tương tự \(\widehat{CEO}=90^o\)

Xét tứ giác CDOE có \(\widehat{CEO}=\widehat{CDO}=90^o\)mà đỉnh E và D đối nhau nên tứ giác CDOE nội tiếp đường tròn đường kính CO.

Xét tứ giác CDHO có: \(\widehat{CHO}=\widehat{CDO}=90^o\) mà đỉnh H và D kề nhau nên CDHO nội tiếp đường tròn đường kính CO.

Vậy nên C, D, H , O, E cùng thuộc đường tròn đường kính CO.

Nói cách khác, O luôn thuộc đường tròn ngoại tiếp tam giác HDE.

Vậy  đường tròn ngoại tiếp tam giác HDE luôn đi qua điểm O cố định.