K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2021

a) Tự làm nhá 

b) +) CM \(\Delta ADC~\Delta HDE\left(g-g\right)\)

=> DA.HE=DH.AC

+) \(\Delta BAD\)cân\(=>\widehat{BAD}=90^0-\frac{1}{2}\widehat{B}=\widehat{CAD}\)

mà \(\widehat{CAD}=\widehat{B}\)

=> AD là tia phân giác góc HAC => Góc HAE = góc CAE => cung HE= cung CE => cạnh HE = cạnh CE => tam giác cân (dpcm)

18 tháng 5 2021

3) Xét \(\Delta MNP\)zuông tại M ngoại tiếp đươg tròn tâm I , bán kính r , tiếp xúc các cạnhMN  , MP,NP thứ tự tại D, E ,F

ta có \(\widehat{IEM}=\widehat{IDM}=\widehat{DME}=90\);ID =IE=r

=> tứ giác IEMD là hình zuông

=> MD=ME=r

Có ND=NF,PE =PF( các tia tiếp tuyến cắt nhau)

=> MN+MP-NP=MD+ND+ME+PE-NF-PF=MD+ME=2r

tam giác ABH zuông tại H có \(\hept{\begin{cases}R_1=\frac{AH+BH-AB}{2}\\\end{cases}}\)

Tam giác ACH zuông tại H có \(R_2=\frac{AH+CH-AC}{2}\)

tam giác ABC zuông tại A có \(R_3=\frac{AB+AC-BC}{2}\)

\(=>R_1+R_2+R_3=AH\)

ta có \(AH\le AO=\frac{6}{2}=3cm\)

dấu = xảy ra khi H trung O

=> A là điểm chính giữa cung BC 

Nguồn : https://qanda.ai/vi/solutions/npWTTopujG-Cho-n%E1%BB%ADa-%C4%91%C6%B0ong-tr%C3%B2n-t%C3%A2m-O-d%C6%B0%E1%BB%9Dng-k%C3%ADnh-BC6cm-Tr%C3%AAn-n%E1%BB%ADa-%C4%91%C6%B0%E1%BB%9Dng-tr%C3%B2n

9 tháng 4 2020

Ta có R là bán kính đường tròn ngoại tiếp một tam giác đều cạnh a thì \(R=\frac{a\sqrt{3}}{a}\) (*)

Dựng 2 tam giác đều BDF và CDG về phía ngoài tam giác ABC, khi đó \(\widehat{BFD}=\widehat{BED}=60^0;\widehat{CGD}=\widehat{CED}=60^o\)

=> BDEF và CDEG là các tứ giác nội tiếp 

Nên R1;R2 lần lượt là bán kính của các đường tròn ngoại tiếp các tam giác đềuy BDF và CDG

Theo (*) ta có: \(R_1=\frac{BD\sqrt{3}}{3};R_2=\frac{CD\sqrt{3}}{3}\Rightarrow R_1R_2=\frac{BD\cdot CD}{3}\)

Mặt khác \(\left(BD+CD\right)^2\ge4\cdot BD\cdot CD\)

=> BD.CD\(\le\frac{\left(BD+CD\right)^2}{4}=\frac{BC^2}{4}=\frac{3R^2}{4}\Rightarrow R_1R_2\le\frac{R^2}{4}\)

Đẳng thức xảy ra khi và chỉ khi

BD=CD, nghĩa là R1;R2 đạt giá trị lớn nhất bằng \(\frac{R^2}{4}\) khi D là trung điểm BC

NV
2 tháng 4 2023

a. Em tự giải

b.

Do tứ giác BDHM nội tiếp \(\Rightarrow\widehat{HDM}=\widehat{HBM}\) (cùng chắn cung HM)

Do tứ giác ABDE nội tiếp \(\Rightarrow\widehat{HBM}=\widehat{ADE}\) (cùng chắn cung AE)

\(\Rightarrow\widehat{HDM}=\widehat{ADE}\)

\(\Rightarrow DH\) là phân giác trong góc \(\widehat{EDK}\) của tam giác EDK

Lại có \(DH\perp DB\) (góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow DB\) là phân giác ngoài góc \(\widehat{EDK}\) của tam giác EDK

Áp dụng định lý phân giác:

\(\dfrac{EH}{HK}=\dfrac{EB}{BK}=\dfrac{ED}{DK}\) \(\Rightarrow BK.HE=BE.HK\)

c.

Hai điểm D và E cùng nhìn CH dưới 1 góc vuông nên tứ giác CDHE nội tiếp đường tròn đường kính CH

\(\Rightarrow I\) là trung điểm CH

Trong tam giác ABC, do hai đường cao AD và BE cắt nhau tại H \(\Rightarrow H\) là trực tâm

\(\Rightarrow CH\perp AB\) hay C;H;M thẳng hàng

Ta có \(IC=IE\) (do I là tâm đường tròn ngoại tiếp CDE) \(\Rightarrow\Delta CIE\) cân tại I

\(\Rightarrow\widehat{ECI}=\widehat{CEI}\)

Lại có \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O \(\Rightarrow\widehat{OBE}=\widehat{OEB}\)

Mà \(\widehat{OBE}=\widehat{ECI}\) (cùng phụ \(\widehat{BAC}\))

\(\Rightarrow\widehat{CEI}=\widehat{OEB}\)

\(\Rightarrow\widehat{CEI}+\widehat{IEB}=\widehat{OEB}+\widehat{IEB}\)

\(\Rightarrow\widehat{CEB}=\widehat{OEI}\)

\(\Rightarrow\widehat{OEI}=90^{ }\)

Hay \(OE\perp IE\Rightarrow IE\) là tiếp tuyến của đường tròn tâm O

NV
2 tháng 4 2023

loading...

19 tháng 1 2023

 mình cần gấp nha

19 tháng 1 2023

haha

2 tháng 2 2022

đây là đề học sinh giỏi của tỉnh hải dương năm 2020-2021 ạ