Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,b,c làm như bạn trên nhé. Tuy nhiên câu d, cách của bạn đó làm dài và k hay, mình làm cách khác:
Mình mượn tạm hình vẽ của bạn đó luôn :))))
Gọi I là trung điểm của AB. vì dây AB cố định (gt) => I cố định
=> \(OI\perp AB\)(Quan hệ vuông góc giữa đường kính và dây cung) => \(\widehat{OIA}=90^o\)(1)
Do \(AM\perp CD\)tại M (gt) => \(\widehat{OMA}=90^o\)(2)
Từ (1) và (2) => Tứ giác OMIA là tứ giác nội tiếp (DHNB) => \(\widehat{IMN}=\widehat{OAI}=\widehat{OAB}\)(cùng bù với \(\widehat{OMI}\)) (3)
Lại có: \(\widehat{OIB}=\widehat{ONB}=90^o\)=> tứ giác OINB là tứ giác nội tiếp(DHNB) => \(\widehat{INO}=\widehat{INM}=\widehat{OBI}\)(Cùng chắn \(\widebat{OI}\)) = \(\widehat{OBA}\)(4)
\(\Delta OAB\)Cân tại O do OA=OB=R => \(\widehat{OAB}=\widehat{OBA}\)(t/c) (5)
Từ (3),(4) và (5) => \(\widehat{INM}=\widehat{IMN}\Rightarrow\Delta IMN\)cân tại I (DHNB) => IM =IN (đ/n) (6)
Do CMHA nội tiếp (cmt) => \(\widehat{IHM}=\widehat{ACM}=\widehat{ACO}\)(Cùng bù với \(\widehat{AHM}\)) (7)
Ta có: \(\widehat{IMH}=\widehat{NMH}-\widehat{IMN}\)mà \(\widehat{NMH}=\widehat{CAH}=\widehat{CAB}\)(Cùng bù \(\widehat{CMH}\))
\(\widehat{IMN}=\widehat{INM}=\widehat{INO}=\widehat{IBO}=\widehat{ABO}=\widehat{OAB}\)(CMT) => \(\widehat{IMH}=\widehat{CAB}-\widehat{OAB}=\widehat{CAO}\)(8)
Mặt khác \(\Delta OAC\)Cân tại O do OA=OC=R => \(\widehat{CAO}=\widehat{ACO}\)(9)
Từ (7),(8) và (9) => \(\widehat{IHM}=\widehat{IMH}\Rightarrow\Delta IMH\)cân tại I (DHNB) => IM = IH (đ/n) (10)
Từ (6) và (10) => IM = IH = IN => I là tâm đường tròn ngoại tiếp \(\Delta HMN\)(I cố định) => Đpcm
a) Xét tứ giác CMHA có: ^CMA=^CHA=900 => Tứ giác CMHA nội tiếp đường tròn
Dựa theo tính chất đừng trung tuyến trong tam giác vuông, ta tìm được tâm G của đường tròn ngoại tiếp tứ giác CMHA là trung điểm của AC.
b) Do tứ giác CMHA nội tiếp (G) => ^ACM+^AHM=1800. Mà ^AHM+^MHB=1800
=> ^ACM=^MHB hay ^ACD=^MHB (1)
Ta thấy tứ giác ACBD nội tiếp (O) => ^ACD=^ABD (2)
Từ (1) và (2) => ^MHB=^ABD. Mà 2 góc này nằm ở vị trí so le trg nên HM // BD (3)
Ta có: Đương tròn (O) có đường kính CD, B thuộc cung CD => ^CBD=900
=> BD vuông góc với BC (4)
Từ (3) và (4) => HM vuông góc với BC (đpcm).
c) Ta có tứ giác CMHA nội tiếp (G) => ^CAH+^CMH=1800. Mà ^CMH+^HMN=1800
=> ^CAH=^HMN hay ^CAB=^HMN
Chứng minh tương tự phần a ta được tứ giác CHNB nội tiếp đường tròn
Từ đó suy ra ^CNH=^CBH hay ^MNH=^CBA
Xét \(\Delta\)HMN và \(\Delta\)CAB: ^CAB=^HMN; ^MNH=^CBA (cmt)
=> \(\Delta\)HMN ~ \(\Delta\)CAB (g.g) (đpcm).
d) Gọi giao điểm của đường tròn ngoại tiếp tâm I \(\Delta\)HMN với AM và AB lần lượt là R và L
Dễ thấy tứ giác HRMN nội tiếp (I) => ^HNM+^HRM=1800. Mà ^ARH+^HRM=1800
=> ^HNM=^ARH hay ^CNH=^ARH (^HNM=^CNH)
Tứ giác CMHA nội tiếp (G) => ^MAH=^MCH hay ^RAH=^NCH
Xét \(\Delta\)AHR và \(\Delta\)CHN: ^CNH=^ARH; ^NCH=^RAH => \(\Delta\)AHR ~ \(\Delta\)CHN (g.g)
=> \(\frac{AH}{CH}=\frac{HR}{HN}\)(5)
Dễ thấy: ^AHR=^CHN => ^AHC+^CHR=^CHR+^RHN => ^AHC=^RHN
Mà ^AHC=900 => ^RHN=900
Tứ giác CHNB nội tiếp đường tròn => ^HBN=^HCN hay ^LBN=^HCN
Lại có: Tứ giác HMLN nội tiếp I => ^HLN=^HMN => 1800-^HLN=1800-^HMN
=> ^NLB=^HMC
Theo t/c góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung => HMC=^NHC=> ^NLB=^NHC
Xét \(\Delta\)CHN và \(\Delta\)BLN: ^HCN=^LBN; ^NHC=^NLB (cmt) => \(\Delta\)CHN ~ \(\Delta\)BLN (g.g)
=> \(\frac{BL}{CH}=\frac{LN}{HN}\)(6)
Xét (I) có đường kính HL; R thuộc cung HL => ^HRL=900 . Tương tự ta có: ^HNL=900
Xét tứ giác HRLN: ^HRL=^HNL=^RHN=900 (cmt) => Tứ giác HRLN là hình chữ nhật
=> HR=LN (2 cạnh đối) (7)
Từ (5); (6) và (7) => \(\frac{AH}{CH}=\frac{BL}{CH}\)=> \(AH=BL\)
I là trung điểm HL => IH=IL => IH+AH=IL+BL => AI=BI => I là trung điểm của AB
Do dây cung AB cố định => Trung điểm I của AB là điểm cố định.
Mà I là tâm đường tròn ngoại tiếp \(\Delta\)HMN
Suy ra tâm đường tròn ngoại tiếp \(\Delta\)HMN là điểm cố định khi C di động trên cung lớn AB (đpcm).
+ ) Ta thấy ngay hai tam giác vuông AHC và ANC có chung cạnh huyền AC nên A, H, N, C cùng thuộc đường tròn đường kính AC.
\(\Rightarrow\widehat{HNA}=\widehat{HCA}\) (Hai góc nội tiếp cùng chắn cung AH)
Ta thấy ngay hai tam giác vuông AMB và AHB có chung cạnh huyền AB nên A, M, H, B cùng thuộc đường tròn đường kính AB.
\(\Rightarrow\widehat{HMN}=\widehat{ABH}\) (Góc ngoài tại đỉnh đối diện bằng góc trong tại đỉnh)
Vậy nên \(\Delta ABC\sim\Delta HMN\left(g-g\right)\)
+) Ta có \(\widehat{ADC}=\widehat{ABC}\) (Hai góc nội tiếp cùng chắn cung AC)
Mà \(\Delta ABC\sim\Delta HMN\Rightarrow\widehat{ABC}=\widehat{HMN}\)
nên \(\widehat{ADC}=\widehat{HMN}\)
Chúng lại ở vị trí so le trong nên DC // HM
Ta có \(DC\perp AC\Rightarrow HM\perp AC\)
Gọi J là trung điểm AB
Ta có ngay IJ là đường trung bình tam giác ABC nên IJ // AC
Vậy nên \(HM\perp IJ\)
Mà J là tâm đường tròn ngoại tiếp tứ giác AMHB nên IJ vuông góc cung HM tại trung điểm HM hay IJ là trung trực của HM.
Vậy thì IM = IH.
Tương tự ta có IM = IH = IN hay I là tâm đường tròn ngoại tiếp tam giác HMN.
Bài 2
a) Ta có \(\widehat{AEB}=\widehat{AHB}=90^o\). Tứ giác ABHE nội tiếp
=> \(\widehat{EHC}=\widehat{ABA'}=\widehat{BCA'}\)
=> HE//CA'
Vì CA' _|_ AC => HE _|_ AC
c) Gọi M là trung điểm của AB, N là trung điểm BC
Đường tròn ngoại tiếp ABHE có tâm là M nên M nằm trên đường trung trực của HE
Do HE _|_ AC nên trung trực của HE song song với AC và chứa đường trung bình của tam giác ABC
Do đó trung điểm N của BC nằm trên trung trự của HE
Mặt khác E,F là chân đường vuông góc của B và C hạ xuông AA' nên trung trực của EF đi qua trung điểm N của BC
Vậy N là tâm của đường tròn ngoại tiếp tam giác HEF là 1 điểm cố định cho BC cố định
Bài 1
bổ sung câu c bài hỏi .là : CM \(\frac{DE}{BE}=\frac{BD}{BA}\)
bài làm
a) ta có . tam giác ACO zuông tại C , Tam giác ABO zuông tại B
nên C , B lần lượt nhìn AO zới 1 góc =90 độ
=> ABCO nội tiếp
b) ta có tam giác ABC cân tại A do AB=AC
mà AH là đường cao
nên AH cx là đường trung tuyến
=> CH = HB
=> AO là đường trung trực của CB
c) ta có BD là đường kính của O
nên góc BED = 90 độ
xét 2 tam giác zuông BED zà ABD có
góc BAD = góc BDA ( cùng nhìn \(\widebat{BE}\)
BD chung
=> tam giác BED = tam giác DBA
=> \(\frac{DE}{BE}=\frac{BD}{BA}\)
Tết nghỉ ngơi đi em, thời gian này nên chơi cho đầu óc thanh thản chứ ko nên học
Hướng dẫn sơ sơ cách giải cho câu này:
Trước hết em chứng minh \(MN\perp DF\)
Sau đó chứng minh \(DN=NF\) (đều bằng \(\dfrac{1}{2}AC\), lý do là 2 trung tuyến của 2 tam giác vuông đều có cạnh huyền AC)
\(\Rightarrow MN\) là trung trực DF (1)
Hoàn toàn tương tự, gọi P là trung điểm AB thì cũng chứng minh được \(MP\perp DE\) và \(PD=PE\Rightarrow PM\) là trung trực DE (2)
(1);(2) suy ra đpcm