Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n = 0 thì n2005 + 2005n + 2005n = 02005 + 20050 + 2005.0 = 1 + 1 + 0 = 2 không chia hết cho 3, loại.
Với n = 1 thì n2005 + 2005n + 2005n = 12005 + 20051 + 2005.1 = 1 + 2005 + 2005 = 4011 chia hết cho 3.
Với n > 1 thì đều ra trường hợp không chia hết cho 3.
Vậy n = 1
vi 2005 chia cho 3 du 1 nen 2005n=3k+1
ta chia 3TH:
TH1:n=3k
=>2005n+n2005+2005n=(3k+1+3k+3k) chia cho 3 du 1(loại)
TH2:n=3k+1
=>2005n+n2005+2005n=3k+1+3k+1+3k+1=3(3k+1)chia het cho 3
TH3:n=3k+2
=>2005n+n2005+2005n=3k+1+3k+2+3k+2=3.3k+5chia cho 3 du 1(loai)
vậy n có dang 3k+1 thi 2005n+n2005+2005n chia het cho 3
a chia cho 153 dư 110 => a - 110 chia hết cho 153
a chia cho 117 dư 110 => a - 110 chia hết cho 117
=> a - 110 \(∈\) BC(153; 117)
153 = 32.17 ; 117 = 32.13 => BCNN (153;117) = 32.13.17 = 1989
=> a -110 \(∈\) B(1989) = {0;1989; 3978;5967;...} => a \(∈\) {110;2099;4088; ...}
Mà 2000 < a < 5000 nên a = 2099 hoặc a = 4088
Vậy...
Chúc bạn học tốt
N=5/10^2005+5/10^2006+610^2006
M=5/10^2005+6/10^2005+5/10^2006